

HOW TO CREATE ADVENTURE GAMES

CHRISTOPHER LAMPTON

HOW TO
CREATE

ADVENTURE
GAMES

A Computer-Awareness
First Book

Franklin Watts
New York I London 1 Toronto

Sydney 11986

Diagram courtesy of Vantage Art, Inc.

Library of Congress Cataloging in Publication Data

Lampton, Christopher.
How to create adventure games.

(A Computer-awareness first book)
Includes index.

Summary: Provides instructions for writing a
computer program for an adventure game using BASIC.

1. Computer adventure games-Juvenile literature.
2. BASIC (Computer program language)-Juvenile

literature. [1. Computer games. 2. BASIC (Computer
program language) 3. Programming languages (Computers)

4. Programming (Computers)] l. Title. II. Series.
GV1469.22.L35 1986 794.8'2 85-26511

ISBN 0-531-10119-3

Copyright © 1986 by Christopher Lampton
All rights reserved

Printed in the United States of America
54321

CONTENTS

Chapter One
The Imagination Machine

1

Chapter Two
Mapping Your Imagination

7

Chapter Three
Getting Your Bearings

17

Chapter Four
Filling the World

29

Chapter Five
The Parser

35

Chapter Six
Verbs and Nouns

39

Chapter Seven
Verbs, Verbs, and More Verbs

49

Chapter Eight
Finishing Touches

59

Appendix A The Quest
63

Appendix B Adventure Game Skeleton
75

Index
85-

HOW TO CREATE ADVENTURE GAMES

CHAPTER ONE

THE IMAGINATION
MACHINE

A computer is an imagination machine. It can take you places
where you've never been before, where nobody has ever been.

A computer is a magic wand. It can make things happen: excit­
ing things, wonderful things.

If you have ever played games on a computer, you know
about these wonderful places and things. The most wonderful
thing about the computer, however, is that you can use it to create
your own wonderful places, where you and your friends can go.
You can create strange worlds, exotic lands. You can even have
adventures in these new worlds that you have created.

To create these new worlds, though, you must know how to
program a computer, using a computer programming language. If
you don't know what programming is, or what a programming
language is, then you should do a little research before you read
this book. In the pages that follow, we'll show you how to create a
kind of computer game called an adventure game, using the pro­
gramming language known as BASIC. Although we will explain
step by step how an adventure program is written, you will need
to know some things about writing programs in BASIC before you
start. That doesn't mean that you should be an expert program-

[1]

mer, just that you should know something about how to type a
../

BASIC program on your computer. You should be familiar with
such BASIC commands as PRINT and GOTO and IF-THEN and
FOR-NEXT. You should know how to use variables. You should
know what a string is, and a number, and how to perform simple
arithmetic in a computer program.

An adventure game isn't the easiest kind of program to write,
though it is far from the hardest. We will write some parts of the
program for you. At the end of this book, we'll even give you an
Adventure Game Skeleton, with blank spaces left for the routines
that you have to write yourself. To write an adventure game using
this skeleton, all you have to do-literally-is fill in the blanks.

There is one problem that you may encounter in using the
program routines that we give you in this book. They may not
work properly on a few computers. The truth is, there are many
different versions of the BASIC programming language, and dif­
ferent computers understand different versions. This makes it dif­
ficult to write a BASIC program on one computer and then trans­
fer it to another. The programs in this book were written on com­
puters from Radio Shack and Commodore, but the computer that
you are using may be manufactured by IBM or Apple or any of a
hundred other computer companies. Fortunately, all but a few of
these computers understand a special dialect of BASIC called
Microsoft BASIC (written by the Microsoft Corporation of Wash­
ington State), which is the version of BASIC that we will use in
this book. Computers that use Microsoft BASIC, such as those
made by Apple, IBM, Radio Shack, and Commodore, should have
no trouble running these programs.

What is an adventure game? If you have never played one,
then you have missed an exciting experience. An adventure game
is like a novel, except that you are the main character and can
make decisions about what will happen in the story. Unlike a nov­
el, an adventure game is different every time you play it, because
the course of the story is determined by what you choose to do.

The first adventure game was written in the mid-1970s by a

[2]

programmer named William Crowther. It was written in a pro­
gramming language called FORTRAN and was intended to be
used on very large computers. (Today, you can buy versions of
this program to run on home computers.) It was not given a
name-after all, it was the only program of its sort at the time­
but it quickly became known as Adventure or the Colossal Cave
Adventure or, after other adventure games were written, the Orig­
inal Adventure. Shortly after Crowther unleashed the program on
the world, it was rewritten and expanded by a second program­
mer named Don Woods, and so it is sometimes also known as the
Crowther and Woods Adventure. The program became so popu­
lar that it can be found on computers at universities all over the
world.

Like most of the adventure programs that have followed, the
Crowther and Woods Adventure begins by telling the player
where he or she is and what is visible. The opening description in
the Original Adventure goes something like this:

YOU ARE STANDING AT THE END OF A ROAD BEFORE A
SMALL BRICK BUILDING. AROUND YOU IS A FOREST. A
SMALL STREAM FLOWS OUT OF THE BUILDING AND DOWN
A VALLEY.

The game then asks the player what he or she would like to do
next. The player must respond by typing a one- or two-word sen­
tence. The words in this sentence must be words that the game
program will recognize. (The game will inform the player if it
doesn't recognize a word or words.) For instance, if a player at the
beginning of the Original Adventure types "GO BUILDING," the
program will move your character into the building, then describe
what the building looks like on the inside:

YOU ARE INSIDE A BUILDING, A WELL HOUSE FOR A LARGE
SPRING.

THERE IS A BOTTLE OF WATER HERE.

[3]

THERE IS A SHINY BRASS LAMP HERE.
THERE IS A SET OF KEYS HERE.
THERE IS FOOD HERE.

Notice that the game describes a number of objects that are pres­
ent in the current location. This usually means that the player can
pick up one or more of these objects and carry them about. There­
fore, if you type "GET LAMP" or "TAKE LAMP," the game will
respond:

OK.

meaning that the lamp has been taken, and is now in your pos­
session. To double-check that the lamp is in your possession, you
can type "INVENTORY." This tells the game to print out a com­
plete list of everything that you are carrying, like this:

YOU HAVE:
LAMP

If you then pick up another object, it will also be included in the
list next time you type "INVENTORY." Should you want to get
rid of an object, such as the lamp, you can type "DROP LAMP."
The lamp will be placed in whatever room you are standing in
when you drop it. (In adventure language, any location in the
game is referred to as a room, even if it is out of doors.)

Eventually, the player of the Crowther and Woods Adventure
finds his or her way into a huge underground cavern. In that cav­
ern are deadly knife-throwing dwarfs, fire-breathing dragons, and
valuable treasures. Every time you find a valuable treasure, you
are given a certain number of points. Once you have achieved the
maximum number of points, you have won the game. Of course,
getting the treasures isn't easy. In fact, it requires a great deal of
ingenuity. And you will probably get killed a few times before
you have finished playing the game. Fortunately, every time you

[4)

aFe killed, you are automatically brought back to life outside the
cave, to start the adventure over again.

Most of the adventure games that have followed the Original
Adventure have been patterned after it in some way. The first
adventures written for microcomputers were produced by a
young programmer named Scott Adams, who founded a company
called Adventure International to publish a series of twelve
adventure games, with names like Adventureland and Voodoo
Castle and Pyramid of Doom, which are still available for several
brands of microcomputers. And in the late 1970s, a group of pro­
grammers at MIT wrote their own version of the Original Adven­
ture, called Zork, which is now available, along with several
sequels, on microcomputers. Unlike Adventure, Zork does not
restrict the player to one- and two-word commands. In fact, Zork
can understand entire sentences, as long as they are constructed
according to a loose set of rules. The microcomputer version of
Zork is published by a company called Infocom, along with a
series of adventure games regarded by some as the finest comput­
er adventures ever written.

Other adventure game writers have introduced other innova­
tions. Many adventures include computer-generated pictures, or
graphics, so that you can see the places described in the text.
Although the games in this book use only text, not pictures, an
ingenious programmer can figure out ways to incorporate graph­
ics into an adventure game.

[5]

CHAPTER TWO

MAPPING YOUR
IMAGINATION

The first thing you need when you write an adventure game is an
idea. The second thing you need is a map.

Getting an idea is easy. Ideas are all around you; you just have
to look for them. You can base an adventure game on a favorite
movie, or on a novel you've read, or on a comic book. Or you can
think up a completely new idea for a story, if you've got a sharp
imagination.

Getting a map is harder. You can't walk into a gas station and
buy a map of your adventure. You have to make one yourself. We
recommend that you set aside several sheets of paper and a sharp
pencil for map making. And make sure that the pencil has a good
eraser!

The typical adventure game takes the form of a quest. A quest
is a story in which the hero is searching for something, usually an
object or a person. The object could be a jewel or a magic book or
just about anything of value. The person could be a beautiful prin­
cess, or a lost child, or an important scientist-or a master crimi­
nal.

In order to find the object or objects of a quest, powerful
obstacles must first be overcome. And in order to overcome these

[7)

obstacles, certain devices must be obtained, or certain tasks must
be accomplished.

The adventure that we will create in this book will be a
straightforward quest adventure. The object will be a magic jewel.
Once the player has the magic jewel, the game will be over. Get­
ting the magic jewel, of course, will not be easy. It will require that
the player travel a great distance, learn to perform certain tricks,
and obtain certain objects.

Here is the plot of the game:

You (the player) have been left a mysterious diary and a box by
your late uncle. When you read the diary, you learn that your
uncle had discovered a gateway into another world! He has left
you instructions for reaching that other world, and a magic
formula that will help you in your journey, so that you can con­
tinue his search for a fabled magic jewel.

According to the diary, you can reach the other world by mix­
ing the magic formula (which is in the box) with sodium chloride
and rainwater. If you don't know what sodium chloride is, look it
up in the dictionary (which is also in the game, in a nearby room).
The dictionary will tell you that sodium chloride is ordinary table
salt. In your kitchen, you find a shaker of salt. In the garage, you
discover a barrel filled with rainwater. When you pour the
formula and the salt into the barrel-po of! You are transported to
the other world.

In the new world, you find an open field and a tree. If you try
to climb the tree, you are told that the branches are too high. If
you try to use a ladder-surprise!-it sinks into the soft ground
below the tree and disappears!

There is a way to climb the tree, however: you must JUMP. On
the lowest branch of the tree, you will find a MAGIC FAN. You
can GET this fan and add it to your INVENTORY, if you so wish.
You can get back out of the tree by typing GO DOWN.

There is also an object in the open field, but you cannot see it
at first because it is buried. If you have a shovel in your inventory,

[8]

you can DIG for it. It is a GOLDEN SWORD, and it will come in
handy later.

To the north, you find a boat by a river. You can enter the boat
by typing GO BOAT. Making the boat move to the other side of
the river is more difficult, but if you type WAVE FAN, the magic
fan will create a breeze that blows the boat across. You can then
leave the boat by typing LEAVE BOAT or EXIT BOAT.

Further north, you come to a large castle. If you try to GO
NORTH again and enter the castle, a nasty-looking guard stops
you-unless you have the sword, in which case the guard retreats
inside the castle.

Inside, you find a glass case that contains a jewel-the magic
jewel! But first you must OPEN the case-and you cannot,
because it is electrified! (You might ask how glass can be electri­
fied. Nobody ever claimed that this adventure was perfectly logi­
cal. How often do you find magic fans in trees?)

How can you open an electrified case? The solution is
that ... you overlooked an object earlier. When you climbed
the tree, you only JUMPed to the first limb. However, there was
another limb above that one. With a second JUMP command, you
would have ended up in the top of the tree, where you would
have found a pair of rubber gloves.

You go back and get the gloves. Now, the command WEAR
GLOVES will make you immune to the electrified case. You can
OPEN CASE, GET JEWEL-and win the game!

That's the adventure game we are going to write. Now we need a
map. There are two steps to making a map. First, you must make a
list of all the rooms in your game. A room, in an adventure game,
is a location that the player can go to. It can be indoors or out­
doors. In this game, there are nineteen rooms. When you make a
list of these rooms, you should write their names exactly as they
will appear in the game, minus the words "YOU ARE," which will
always appear in front of the description of the room. Here is a list
of the rooms in our adventure:

[9]

1. IN YOUR LIVING ROOM.
2. IN THE KITCHEN.
3. IN THE LIBRARY.
4. IN THE FRONT YARD.
5. IN THE GARAGE.
6. IN AN OPEN FIELD.
7. AT THE EDGE OF A FOREST.
8. ON A BRANCH OF A TREE.
9. ON A LONG, WINDING ROAD.

10. ON A LONG, WINDING ROAD.
11. ON A LONG, WINDING ROAD.
12. ON THE SOUTH BANK OF A RIVER.
13. INSIDE THE WOODEN BOAT.
14. ON THE NORTH BANK OF A RIVER.
15. ON A WELL-TRAVELED ROAD.
16. IN FRONT OF A LARGE CASTLE.
17. IN A NARROW HALL.
18. IN A LARGE HALL.
19. ON THE TOP OF A TREE.

Notice that every room has a number. This is very important. The
adventure game program uses these numbers to identify what
room you are in.

Now, we need a way to get this list of rooms into our game
program. For that, we will need a variable array.

A variable array is a method of putting lists of things in a
BASIC program. In Microsoft BASIC, there are numeric arrays, for
keeping lists of numbers, and string arrays, for keeping lists of
strings (that is, words and sentences).

We will store the names of our rooms in a string array, because
these names are strings of characters. But we will also use numeric
arrays in our adventure program, to keep lists of numbers.

An array has a name, just like an ordinary variable. Unlike the
name of a normal variable, the name of an array variable must be
followed by a pair of parentheses-"()". These parentheses

[10)

should contain a number-or a variable or arithmetic operation
equal to a number. This number is called the subscript of the vari­
able and should be between 0 and 32767. A typical array variable
might look like this:

AB(17)

The name of this array is AB. The subscript of this array variable is
17.

Before we can use an array variable, however, we must dimen­
sion the array-that is, we must use the BASIC command DIM,
followed by the name of the variable, and a number in paren­
theses indicating how many items are in the list we want to store.
For the list of room names, we will use an array called R$. (Notice
the dollar sign after the name. This tells us that R$ is a string
array.) Since there are nineteen room names, we would dimen­
sion this array like this:

DIM R$(19)

There are nineteen elements in this array. That means that this
array is actually made up of nineteen different array variables.
Here are their names:

R$(1)
R$(2)
R$(3)
R$(4)
R$(5)

R$(6)
R$(7)
R$(8)
R$(9)
R$(10)

R$(11)
R$(12)
R$(13)
R$(14)
R$(15)

R$(16)
R$(17)
R$(18)
R$(19)

Actually, there is a twentieth element in this array, called R$(O).
We are going to ignore this element for now, since there is no
room 0 in our game-and we are going to use each element in the
array to store the name of one room.

Here is a subroutine that will set each element of array R$

[11]

equal to the name of one room. This subroutine will eventually
become part of our adventure game program:

27000 R$(1)="IN YOUR LIVING ROOM."
27010 R$(2)="IN THE KITCHEN."
27020 R$(3) = "IN THE LIBRARY."
27030 R$(4)= "IN THE FRONT YARD."
27040 R$(5)= "IN THE GARAGE."
27050 R$(6) = "IN AN OPEN FIELD."
27060 R$(7) = "AT THE EDGE OF A FOREST."
27070 R$(8)="ON A BRANCH OF A TREE."
27080 R$(9)="ON A LONG, WINDING ROAD."
27090 R$(10)="ON A LONG, WINDING ROAD."
27100 R$(11)="ON A LONG, WINDING ROAD."
27110 R$(12)="ON THE SOUTH BANK OF A RIVER."
27120 R$(13)="INSIDE THE WOODEN BOAT."
27130 R$(14)="ON THE NORTH BANK OF A RIVER."
27140 R$(15)="ON A WELL-TRAVELED ROAD."
27150 R$(16)="IN FRONT OF A LARGE CASTLE."
27160 R$(17)="IN A NARROW HALL."
27170 R$(18)="IN A LARGE HALL."
27180 R$(19)="ON THE TOP OF A TREE."
29900 RETURN

If you use this subroutine in a program, you must also include
the instructions DIM R$(NR) and GOSUB 27000 very early in the
program, in that order. (NR should be equal to the number of
rooms in your program.)

Type this subroutine and save it on a disk or tape. We'll be
using it in a minute.

If you want to adapt this subroutine for your own adventure
game programs, you must substitute the names of your own
rooms. Add or subtract lines from this routine as needed.

In our finished adventure game, there will be a variable
called R. This is a numeric variable, which means that it will

[12]

always be equal to a number. The number that it will be equal to is
the number of the room that the player is in currently. When the
description of a room needs to be printed on the screen of the
computer, the program will consult variable R to find out what
room is to be described. It will then look at array R$, which we
created in the subroutine above, to find the proper description.
How will it know which description goes with room R? Because R
will be equal to the subscript (the number in parentheses) of the
array element containing the description.

For instance, if variable R is equal to 6, that means that the
player is in room 6. What is the description of room 6? If we look
at the subroutine above, we see that room 6 is described like
this:

"IN AN OPEN FIELD."

Now we are going to give you a subroutine that will print out
a description of the current room. When the adventure program
needs to describe the current room (room R), it can call this sub­
routine with a COSUB 700 instruction:

691 REM ** ROOM DESCRIPTION ROUTINE
696 REM
700 PRINT: PRINT "YOU ARE";R$(R)
710 RETURN

This is a very simple subroutine. All it does is print the words
"YOU ARE," followed by the description of the room that you
have put in array R$.

To demonstrate this subroutine, add it to the earlier subrou­
tine and then add these lines:

20 NR=19
30 DIM R$(20)
50 GOSUB 27000

[13]

60 PRINT "WHAT ROOM WOULD YOU LIKE DESCRIBED
(1-19)";
65 IF R<1 OR R>19 THEN 30
70 INPUT R
90 GOSUB 700
100 GOTO 60

Also, you should add a line 10 that will clear the video display
of your computer. If you are using an Apple II series computer,
you would write:

10 HOME

If you are using a Radio Shack or IBM computer, you would
write:

10 CLS

And if you are using a Commodore computer, you would write:

10 PRINT CHR$(147);

If you are using a computer other than those named above,
you will need to consult the computer's manual to learn how to
clear the display-or you will simply have to leave the display
uncleared.

(If you are using a Radio Shack Model I, III, or 4, add this
instruction to line 10:

CLEAR 2000

to open up storage space for all the text strings we will be han­
dling.)

Once you have all these routines together in a single program,
type RUN and press RETURN.

[14]

The program will ask "WHAT ROOM WOULD YOU LIKE
DESCRIBED (1-19)?" In response, type a number from 1 to 19.
The computer will print a description of that room, just as though
we were playing the adventure game and had entered that
room.

For instance, if you type 15, the computer will print:

YOU ARE ON A WELL-TRAVELED ROAD.

Once you have satisfied yourself that this program works,
make sure that you have saved it to disk or tape. Later, we will
delete lines 10 through 70, because they are not part of the adven­
ture program. For now, however, we will leave them in the pro­
gram. With each chapter, we will add more lines to this pro­
gram-until we have a complete adventure game.

[15]

CHAPTER THREE

GETTING
YOUR BEARINGS

The second step in making a map is to draw it on paper. Get the
pencil that we suggested you set aside-and start drawing.

How you draw the map is your own business. We recommend
that you draw a separate box for each room in the game. Each box
should be big enough that you can write the name and number of
the room inside it, but small enough that you can fit lots of them
on a piece of paper.

You should also draw lines between the boxes to show paths
that lead from one room to another. As on a road map, a line that
goes left means that you must go west to get from one room to the
next, a line that goes right means that you must go east, a line that
goes up means that you must go north, and a line that goes down
means that you must go south. How do you represent paths that
go up and down between rooms? We recommend that you use
diagonal or even curved lines. If the line slants downward toward
a room, then you must go down. If the line slants upward, you
must go up.

On page 18 you will see a map for our adventure game. Notice
that some rooms are not connected to other rooms by lines. The

[17]

19
TOP
OF

TREE

~

8
BRANCH
OF TREE

L-

17
NARROW

HALL
I

16
SOUTH

OF
CASTLE

I

15
WELL-

TRAVELED
ROAD

I

14
NORTH BANK

OF
RIVER

13
BOAT

12
SOUTH BANK

OF
RIVER

9
LONG,

WINDING
ROAD

6
OPEN
FIELD

I

7
EDGE OF
FOREST

18 J LARGE
HALL

11
LONG,

WINDING
ROAD [

10
LONG,

'""WINDING
ROAD

5 4

GARAGE'"" FRONT
YARD

~

1 2
LIVING .. KITCHEN
ROOM

.J.

3
LIBRARY

boat (room 13), for instance, has no lines connecting it to other
rooms. This is because you can only get to the boat by saying GO
BOAT and you can only leave the boat by saying LEAVE BOAT.
You cannot reach the boat by going north, south, east, west, up, or
down.

In the same way, the garage is not connected to the open field,
because you can only get between these two places by mixing the
magic formula, not by going in a direction.

The way in which rooms are connected on the map is impor­
tant. It tells us how we can move around through the imaginary
world of the adventure. We must also tell the computer about this
imaginary world. That is, we must somehow put this map into our
program, much like we put the list of room names into the pro­
gram in the last chapter. This requires that we use a two-dimen­
sional array.

A map has two dimensions: length and width. You can move
north and south on the map and you can move east and west on it.
(On the adventure game map, you can also move up and down,
but we'll pretend for now that these fit in with the other two
dimensions.)

To describe a map to a computer, we must use a two-dimen­
sional array. A two-dimensional array, like the one-dimensional
arrays we discussed in the last chapter, can store lists of numbers
or strings. Every element in a two-dimensional array has two sub­
scripts, instead of just one, like this:

AB(15,6)

Each subscript represents one of the two dimensions. We will call
the first subscript "dimension one" and the second "dimension
two." We create two-dimensional arrays with a DIM statement,
just as we create one-dimensional arrays, except that we must tell
the DIM statement how many elements we will have in both
dimensions.

For our map, we will use a two-dimensional array called MA.

[19]

This will be a numeric array-that is, an array that will store a list
of numbers. We can dimension it like so:

DIM MA(19,5)

This tells the computer that the first subscript can have any value
between 0 and 19 and that the second subscript can have any
value between 0 and 5. Thus, the total number of elements in this
two-dimensional array is 19 times 6, or 114. We won't list all of
those elements, but here are a few examples:

MA(O,O)
MA(6,3)
MA(14,5)
MA(19,O)
MA(8,2)
MA(3,3)

And so forth.
We'll use the first of the two subscripts to represent room

numbers. (Once again, the 0 subscript will be ignored, as in the
last chapter.) We'll use the second subscript to represent direc­
tions.

There are six different directions-north, south, east, west, up,
and down-and we will use the numbers 0 to 5 to represent them,
like this:

0- North
1 - South
2 - East
3 - West
4 - Up
5 - Down

[20]

Why are we doing this? We can use the values of the elements in
this two-dimensional array to tell the computer whether we can
go in a certain direction from a certain room and, if so, where we
will end up if we go that way. For instance, suppose that we set
this element:

MA(3,1)

equal to 0 with this statement:

MA(3,1)=O

This will tell the computer that we cannot go south from the li­
brary. How does it tell the computer that? The first subscript, as
noted above, is the room number. In this case, it is a 3, which is
the library. The second subscript is the direction. In this case, it is
a I, which is south. The fact that this element has been set equal to
o means "you can't go that way!"

On the other hand, if we set an element equal to a number
other than 0, like this:

MA(7,O)=6

it means that you can go in a certain direction. In this case, it
means that you can go north (direction 0) from the edge of the
forest (room 7). And where do you end up if you go north from
the edge of the forest? You end up in room 6, the open field.
Which is why we set this element equal to 6.

To sum up, each element of the two-dimensional array, MA,
represents a room and a direction, as identified by the two sub­
scripts. If the value of the element is 0, then you cannot go in that
direction from that room. If the value of the element is not 0, then
it represents the room you will end up in if you go in that direction
from that room.

[21]

In a few special cases, you might not want the player to move
between rooms in an ordinary manner. Perhaps something or
someone, such as a dragon or a guard, is blocking the passage. In
this case, put a number between 128 and 255 for the value of that
direction and room. Remember what number you use. In Chapter
Six, we'll show you what to do with it.

At the start of our adventure game program, we must call a
subroutine that will fill in all the values of this array, according to
the map on page 18. We could design this subroutine as a series of
assignment statements, like this:

25000 MA(0,0)=4
25010 MA(0,1)=3
25020 MA(0,2) = 2
25030 MA(0,3)=0

And so forth. But the subroutine would contain 114 separate
assignment statements, one for each element of the array, so it
would be very large. To save space (and typing), we will use
DATA statements instead. We will also need a subroutine to read
the numbers out of the DATA statements and into array MA,
using the READ command.

For each room on the map of your adventure game, write six
numbers on a piece of paper. Each of these numbers should cor­
respond to one of the six map directions-north, south, east, west,
up, down-in that order. If you can't move in that direction from
the room, write the number O. If you can move in that direction,
write the number of the room that you will end up in. If you can
normally move in that direction, but there is a special difficulty
(such as a dragon blocking the way), use a number between 128
and 255. Since it is unlikely that you will ever have more than 127
rooms in a game, this number will not be mistaken for an ordinary
room number.

For room 1 in the map on page 18, you would write:

[22]

4,3,2,0,0,0 (room 1)

This indicates that if you go north from room 1, you will end up in
room 4 (the front yard). If you go south, you will end up in room 3
(the library). If you go east, you will end up in room 2 (the kitch-
en). You can't go west, up, or down. Notice that we have given the
number of the room in parentheses, so that we won't forget which
room it is.

These are the map numbers for the game. A complete list of map
numbers for our game looks like this:

RM Name N S E W U 0

1. Living Room 4 3 2 0 0 0
2. Kitchen 0 0 0 1 0 0
3. Library 1 0 0 0 0 0
4. Front Yard 0 1 0 5 0 0
5. Garage 0 0 4 0 0 0
6. Open Field 9 7 0 0 0 0
7. Edge of Forest 6 0 0 0 0 0
8. Branch of Tree 0 0 0 0 0 7
9. Long, Winding Road (1) 0 6 10 0 0 0

10. Long, Winding Road (2) 11 0 0 9 0 0
11. Long, Winding Road (3) o 10 0 12 0 0
12. South Bank of River 0 0 11 0 0 0
13. Boat 0 0 0 0 0 0
14. North Bank of River 15 0 0 0 0 0
15. Well-Traveled Road 16 14 0 0 0 0
16. South of Castle 128 15 0 0 0 0
17. Narrow Hall 0 0 0 0 18 0
18. Large Hall 0 0 0 0 0 17
19. Top of Tree 0 0 0 0 0 8

[23)

Compare these map numbers to the map on page 18. Make sure
that you understand how that map was used to create these num­
bers, using the instructions above. Notice that "SOUTH OF CAS­
TLE" includes the number 128 in its list, for the first direction
(north). This means that there is something unusual about this
direction. In this case, it means that there is a guard blocking the
castle door to the north.

Once you have the list of map numbers for your adventure,
you must turn them into DATA statements. To do this, you must
add a BASIC line number plus the word "DATA" in front of each
list of six numbers, and put the name of the room into a REM
statement at the end of the line, separated from the DATA state­
ment by a colon (:). Here are the DATA statements for the above
map numbers.

25100 DATA 4,3,2,0,0,0: REM LIVING ROOM
25110 DATA 0,0,0,1,0,0: REM KITCHEN
25120 DATA 1,0,0,0,0,0: REM LIBRARY
25130 DATA 0,1,0,5,0,0: REM FRONT YARD
25140 DATA 0,0,4,0,0,0: REM GARAGE
25150 DATA 9,7,0,0,0,0 : REM OPEN FIELD
25160 DATA 6,0,0,0,0,0: REM EDGE OF FOREST
25170 DATA 0,0,0,0,0,7 : REM BRANCH OF TREE
25180 DATA 0,6,10,0,0,0 : REM LONG, WINDING ROAD (1)
25190 DATA 11,0,0,9,0,0: REM LONG, WINDING ROAD (2)
25200 DATA 0,10,0,12,0,0 : REM LONG, WINDING ROAD (3)
25210 DATA 0,0,11,0,0,0: REM SOUTH BANK OF RIVER
25220 DATA 0,0,0,0,0,0 : REM BOAT
25230 DATA 15,0,0,0,0,0: REM NORTH BANK OF RIVER
25240 DATA 16,14,0,0,0,0: REM WELL-TRAVELED ROAD
25250 DATA 128,15,0,0,0,0: REM SOUTH OF CASTLE
25260 DATA 0,0,0,0,18,0 : REM NARROW HALL
25270 DATA 0,0,0,0,0,17 : REM LARGE HALL
25280 DATA 0,0,0,0,0,8 : REM TOP OF TREE

[24]

You should now type these lines and add them to our adventure
program. Save the result to tape or disk.

You will also need a subroutine that will read this data into the
map array, MA. Here it is:

24991 REM The following routine reads the map data into
24992 REM the map array, MA(ROOM, DIRECTION).
24993 REM
25000 IF NR=O THEN RETURN
25010 DI$(O)= "NORTH":DI$(1)= "SOUTH":DI$(2)= "EAST"
25020 DI$(3)= "WEST":DI$(4)= "UP":DI$(5)= "DOWN"
25030 FOR 1=1 TO NR
25040 FOR J=O TO ND-1
25050 READ MA(I,J)
25060 NEXT J
25070 NEXT I
25080 RETURN

Add this subroutine to the adventure game program. You can use
this subroutine exactly in this form in an adventure program of
your own. Earlier in the program, you must set the variable NR
equal to the number of rooms in the game with a statement like
this: NR = 19. You must also call this subroutine with the state­
ment COSUB 25000.

This subroutine also creates a string array called DI$, which
has six elements, each of which is set equal to the name of one of
the six directions. This array must be dimensioned at the begin­
ning of the program with the statement

DIM DI$(6)

Notice that we have numbered the DATA statements so that
they will come right after this subroutine in the program. This
helps us keep track of the order of these statements. Later, we will

[25]

put other subroutines into the program that will read DATA state­
ments. It is very important that we execute these subroutines in
order according to line number, because DATA statements must
always be READ in the order that they appear in the program.
(But you knew that, didn't you?)

Finally, we will need a subroutine that prints out a list of the
directions that you can go from the current room-that is, the
room with its number in variable R. Here is that subroutine:

490 REM *** DIRECTIONS
495 REM
500 PRINT "YOU CAN GO: ";
510 FOR 1=0 TO 5
520 IF MA(R,I»O THEN PRINT DI$(I) ;" ";
530 NEXT I
540 PRINT
550 RETURN

Add this subroutine to our adventure program. To see how
our most recent subroutines work, make the following changes to
the program that you have put together so far:

20 NR=19: ND=6 : REM NUMBER OF ROOMS AND
DIRECTIONS
30 DIM R$(NR),DI$(6)
50 GOSUB 25000 : GOSUB 27000
90 GOSUB 700 : GOSUB 500

When you have all of this typed, RUN the program. Once again, it
will ask you "WHAT ROOM WOULD YOU LIKE DESCRIBED
(1-19)?" Type a room number from 1 to 19. The program will not
only print the description of the room, but it will print "YOU
CAN GO," followed by a list of the directions in which you can go
from that room. For instance, if you type la, it will print:

[26]

YOU ARE ON A LONG, WINDING ROAD
YOU CAN GO: NORTH WEST

We now have our map in the computer. The next step is to fill that
map with objects, such as swords and magic fans, that we can
actually pick up and use.

[27]

" .. I

CHAPTER FOUR

FILLING
THE WORLD

Putting objects in our imaginary world, such as swords and books
and magic formulas, is easy. First, we must create three new
arrays, which we will call OB$, 02$, and OB.

OB$ is a string array. We will use it to store the names of the
objects.

02$ is a second string array. We will use it to store a three­
letter "tag" by which the computer can identify each object. More
about the tag in a moment.

OB is a numeric array. It will identify the number of the room
in which each object can be found.

These three arrays must be dimensioned with the statement

DIM OB$(NO),02$(NO),OB(NO)

where the variable NO is equal to the number of objects in the
game.

To create these arrays, you must first make a list of all the
objects in the game. In this list, you should first identify each
object by name. After the name, write the three-letter tag. The tag
should consist of the first three letters in the name of the object.

[29]

For instance, the tag for a BOOK would be BOO. The tag for a
SWORD would be SWO. Don't include any adjectives in this tag.
For instance, if the object is called a GOLDEN SWORD, the tag
would still be SWO, not GOL. If the book is called an ANCIENT
BOOK, the tag would still be BOO, not ANC. Each of these tags
must be unique-that is, you can't have two objects with the same
tag, even if this means changing the name of an object. For
instance, if there is a CASE and a CASTLE in the adventure, they
would both have the tag CAS. Therefore you would have to
change the CASTLE to a PALACE or the CASE to a BOX.

Finally, write the number of the room in which the object can
be found at the beginning of the game. For instance, if the object is
in room 2 (the kitchen), then write the number 2 after the name
and the tag. If the object is not visible at the beginning of the
game, write a 0 after the name and tag. If the object is in the
player's inventory, write the number -1 after the tag. (In case
you haven't taken any courses in math, this number is "negative
one," and is actually lower than O. The computer will use this
number to recognize which objects are in the player's invento­
ry.)

We need a special way to indicate objects that cannot be
picked up and put into the player's inventory. We indicate these
objects by adding 128 to the number of the room in which the
object can be found. For instance, if the room number of the object
is 14 and the object cannot be picked up, then you would give the
object a room number of 142, which is 14 plus 128. This trick lets
the computer know when it should not let the player pick up an
object.

A list of objects for our adventure game looks like this:

OBJ Name

1.
2.

An old diary
A small box

[30]

Tag Room

DIA
BOX

1
1

3. Cabinet CAB 130
4. A salt shaker SAL 0
5. A dictionary DIC 3
6. Wooden barrel BAR 133
7. A small bottle BOT 0
8. A ladder LAD 4
9. A shovel SHO 5

10. A tree TRE 135
II. A golden sword SWO 0
12. A wooden boat BOA 140
13. A magic fan FAN 8
14. A nasty-looking guard GUA 144
15. A glass case CAS 146
16. A glowing ruby RUB 0
17. A pair of rubber gloves GLO 19

Six objects in this list-the cabinet, the wooden barrel, the
tree, the wooden boat, the nasty-looking guard, and the glass
case-have room numbers larger than 127. This means that these
objects cannot be picked up. The guard, for instance, has a room
number of 144. If we subtract 128 from this number, we learn that
the guard is in room 16. In the same way, we can tell that the
cabinet is in room 2.

For the sake of the program, we must change this list of
objects into a series of DATA statements. We do this the same
way we turned the map numbers into DATA statements: by
adding line numbers and the word DATA in front of each object
name. Here is a series of DATA statements made from this list of
objects:

26100 DATA AN OLD DIARY, DIA, 1 : REM OBJECT #0
26110 DATA A SMALL BOX, BOX, 1 : REM OBJECT #1
26120 DATA CABINET, CAB, 130: REM OBJECT #2
26130 DATA A SALT SHAKER, SAL, 0: REM OBJECT #3
26140 DATA A DICTIONARY, DIC, 3 : REM OBJECT #4
26150 DATA WOODEN BARREL, BAR, 133: REM OBJECT #5

[31]

26160 DATA A SMALL BOTTLE, BOT, 0: REM OBJECT #6
26170 DATA A LADDER, LAD, 4 : REM OBJECT #7
26180 DATA A SHOVEL, SHO, 5 : REM OBJECT #8
26190 DATA A TREE, TRE, 135: REM OBJECT #9
26200 DATA A GOLDEN SWORD, SWO, 0 : REM OBJECT
#10
26210 DATA A WOODEN BOAT, BOA, 140 : REM OBJECT
#11
26220 DATA A MAGIC FAN, FAN, 8 : REM OBJECT #12
26230 DATA A NASTY-LOOKING GUARD, GUA, 144 : REM
OBJECT #13
26240 DATA A GLASS CASE, CAS, 146 : REM OBJECT #14
26250 DATA A GLOWING RUBY, RUB, 0 : REM OBJECT #15
26260 DATA A PAIR OF RUBBER GLOVES, GLO, 19 : REM
OBJECT #17

At the end of each line, we have included an object number in a
REM statement. These numbers will come in handy later.

Next, we need a subroutine that will read these data items into
arrays OB$, 02$, and OB. Here is that subroutine:

25910 REM The following subroutine reads the object data
25920 REM into the three object arrays, OB(X), OB$(X), and
25930 REM 02$(X).
25940 REM
26000 IF NO=O THEN RETURN
26010 FOR I=OTO NO-1
26020 READ OB$(I),02$(I),OB(I)
26030 NEXT I
26040 RETURN

Before calling this subroutine, you must set variable NO equal to
the number of objects in the game, like this: NO= 18. (Notice,
incidentally, that the first object is object #0. If you wish, you may
start with object #1, just as we did with the numbers of the

[32]

rooms.) We can execute this subroutine with the statement
GOSUB 26000. The DATA statements holding the object DATA
should come right after this routine.

Next, we need a subroutine that will print out all of the objects
in the current room. Here is that subroutine:

600 PRINT "YOU CAN SEE: "
610 FL=O:FOR 1=0 TO NO-1
620 IF (OB(I) AND 127)=R THEN PRINT" ";OB$(I) : FL=1
630 NEXT I
640 IF FL=O THEN PRINT" NOTHING OF INTEREST"
650 RETURN

Add all of these DATA statements and subroutines to our rapidly
growing program. Then make the following changes and addi­
tions:

20 NR=19 : NO=18 : ND=6 : REM NUMBER OF ROOMS,
OBJECTS, AND DIRECTIONS
30 DIM R$(NR),DI$(ND),OB$(NO),02$(NO),OB(NO)
50 GOSUB 25000 : GOSUB 26000: GOSUB 27000
90 GOSUB 700 : GOSUB 500 : GOSUB 600

Run the program. Once again, you will be asked what room you
would like to have described. Answer with a number between
1 and 19. The program will print a description of the room, a list
of the directions in which you can go from that room, and a list of
the objects visible in that room. For instance, if you type a num­
ber 1, it will print:

YOU ARE IN YOUR LIVING ROOM
YOU CAN GO: NORTH SOUTH EAST
YOU CAN SEE:

AN OLD DIARY
A SMALL BOX

[33]

If there are no objects in a room, it will print:

YOU CAN SEE:
NOTHING OF INTEREST

And that pretty much completes our adventure program's ability
to describe a room. It will now print the description of the room,
the directions in which we can go from that room, and a list of
objects visible in that room.

Next, we need to give commands to the game. This means that
our adventure program must actually be able to understand what
we have typed, in a limited sense. It can do this with the aid of a
very special program routine called a parser.

[34]

CHAPTER FIVE

THE PARSER

Computers don't understand the English language. In fact, the
only language that computers understand is machine language,
which is nothing more than a bunch of electronic bloops and
bleeps (or would be, if you could hear it aloud).

Yet in an adventure game the player must give commands to
the computer using English words. How is this possible?

Actually, it is a trick. The adventure program doesn't really
understand English. However, we can teach it to look for certain
combinations of letters and words, and to do certain things when
it finds those combinations, provided all other conditions are in
agreement.

Some adventure games understand more combinations of
words than others. A lot of the adventures you can buy in stores
will accept commands that resemble complete English sentences,
though even these games don't really understand English. They
just understand certain kinds of sentences-and they don't really
"understand" these sentences in the way that a human being
would.

In our game, we only let the player create two-word com­
mands. Although this limits the number and type of commands

[35]

that the player can use, it makes the program a lot easier to write.
And it doesn't make the playing of the game as difficult as you
might think. Most of the early adventure game programs, such as
the Original Adventure and the Scott Adams adventures, required
two-word commands.

The first word in a command must always be a verb-that is, a
word that tells the program what to do. The second word must be
a noun-that is, a word that tells the program what to do it to. A
very few commands are made up of one word, and this word
should always be a verb. INVENTORY, for instance, is a one­
word command.

When the player types a command, the program must analyze
the command to figure out what the player is asking it to do. The
first step in this analysis is to break the command into two parts,
the verb and the noun. This is done by a routine called a parser.
The parser that we will use in this book is printed below. It is a
complicated routine, and we will not explain how it works in
detail. However, you can easily use it in your adventure programs
if you follow some simple rules, which we will explain immedi­
ately after the parser. Here is the routine:

92 REM *** PARSER
99 REM
100 PRINT: CM$="": INPUT "WHAT NOW";CM$: IF CM$=""
THEN 100
110 C=O : V$= "" : N$= ""
120 C=C+1 : IF C>LEN(CM$) THEN 150
130 W$=MID$(CM$,C,1) : IF W$=" " THEN 150
140 V$=V$+W$: GOTO 120
150 C=C+1 : IF C>LEN(CM$) THEN 180
160 W$=MID$(CM$,C,1): IF W$=" "THEN 180
170 N$=N$+W$: GOTO 150
180 IF V$="" THEN 100
190 IF LEN(V$»3 THEN V$=LEFT$(V$,3)
200 IF LEN(N$»3 THEN N$= LEFT$(N$,3)

[36]

Notice that this routine is not a subroutine. It does not end with
the word "RETURN." We do not call it with the word "GOSUB."
We simply plunk it into the program near the beginning, where it
will be executed before each move of the game.

What does it do? First, it prints the words "WHAT NOW?" on
the video display. Then, it waits for the player to type a command.
When the command has been typed, it breaks it into a verb and a
noun. For instance, if you type the command DROP SWORD, it
will break it into the verb "DROP" and the noun "SWORD."
When the parser is finished, the verb will be stored in the string
variable V$. The noun will be stored in the string variable N$.

Well, actually only the first three letters of the verb and noun
will be stored. This is generally enough to recognize the words by,
and will make the rest of the program a little easier to write.
Therefore, the command DROP SWORD will actually become the
verb "DRO" and the noun "SWO."

To see the parser in action, add it to our growing adventure
program. Then delete these lines from the program:

60, 65, 70

We don't need these lines anymore. They'll only get in the
way.

Finally, add these lines:

60 R=1
210 PRINT "V$ = ";V$
220 PRINT "N$ = ";N$
230 GOTO 100

Line 60 establishes that we are in room 1. When you run this
program, it will print out the description of the first room, just as
though we were actually starting the game.

Run the program. It will print the words "WHAT NOW?" on

[37]

the display. Type a two-word command. It will show you the
three-letter verb and noun stored in V$ and N$.

For instance, if you type "FIGHT DRAGON," this program
will print:

V$ = FIG
N$ = ORA

If one of the two words is three letters or less in length, the
parser will set N$ or V$ equal to the entire word. If you type GO
NORTH, then this program will print:

V$ = GO
N$-= NOR

If you type more than two words, the extra words will be
ignored. If you type GET SALTSHAKER, this program will
print:

V$ = GET
N$ = SAL

If you only type one word, N$ will be set equal to the null
string. This is the string without any characters in it at all. We
represent it symbolically as "". We can check to see if N$ is equal
to the null string like this:

IF N$= "" THEN [rest of statement]

If you type INVENTORY, this program will print:

V$ = INV
N$ =

Now that we can talk to our adventure program, what should
we say? All sorts of things-as we shall see in the next chapter.

[38]

CHAPTER SIX

VERBS
AND

NOUNS

The largest parts of an adventure game program are the verb rou­
tines. These are the parts of the program that check to see what
verb the player typed, then take appropriate action.

There must be a verb routine in the program for every verb
that the program will understand. In fact, every time that we think
of a new verb that we want the program to understand, we must
write a new verb routine to go with it. In almost every game, we
will want to include verb routines for GO, GET, DROP, INVEN­
TORY, EXAMINE, and LOOK.

Most of the verb routines will be written in exactly the same
manner. The first line of the routine checks to see if V$ is equal to
the first three letters of a certain verb. If not, the program jumps to
the next verb routine, which checks for a different verb.

If no verb routine recognizes V$, the program prints the
words

"I DON'T KNOW HOW TO DO THAT"

on the video display, and jumps back to the parser on line 100.
The verb routine then checks to see what noun is stored in N$.

If the noun in N$ doesn't make sense when used with the verb in

[39]

V$, the program prints an error message, something like "YOU
CAN'T DO THAT WITH THAT!"

On the other hand, if the noun goes with the verb, the verb
routine must then check several other things. In some cases, the
player must be in the right room for performing the action. Any
necessary objects must be in the same room or in the player's
inventory, and so forth. The exact process depends on the partic­
ular verb.

Almost every verb routine ends with the instruction GOTO
100. This takes the program back to the first line of the parser,
which asks for a new command. A few verb routines end with the
line GOTO 90. This takes the program back to line 90, which is
just before the beginning of the parser. Line 90 will print out a full
description of the current room. This line is useful if the player has
just moved to a new room, or has asked to LOOK at the current
room. As soon as this description is printed, the parser will ask for
a new command.

Most of the remainder of this book will be concerned with
verb routines. We will give you several verb routines in this chap­
ter. These routines are for verbs such as "GO" and "GET" that are
common to all adventure games. You may use these routines in
your own adventure programs. (They are included in the skeleton
program at the end of the book.) In the next chapter, we will write
some verb routines that are special to this program. You may want
to rewrite some of these routines so that they will work in your
own games.

For instance, here is a routine for the verb "GO":

1998 REM ROUTINE FOR THE VERB 'GO.'
1999 REM
2000 IF V$<>"GO" THEN 2500
2010 IF N$="NOR" THEN 01=0: GOTO 2400
2020 IF N$= "SOU" THEN 01 = 1 : GOTO 2400
2030 IF N$= "EAS" THEN 01 =2 : GOTO 2400

[40]

2040 IF N$="WES" THEN DI=3 : GOTO 2400
2050 IF N$="UP" THEN DI=4 : GOTO 2400
2060 IF N$="DOW" THEN DI=5 : GOTO 2400
2070 REM PUT ADDITIONAL 'GO' DIRECTIONS HERE.
2390 PRINT "YOU CAN'T GO THERE!" : GOTO 100
2399 REM
2400 IF MA(R,DI»O AND MA(R,DI)<128 THEN R=MA(R,DI) :
GOTO 90
2410 REM CHECK FOR SPECIAL (GREATER THAN 128)
DIRECTIONS
2480 GOTO 2390

The first line (2000) of the GO routine checks to see if the verb
(V$) is "GO." If not, it jumps to the next verb routine, which will
begin on line 2500. If the verb is "GO," it checks to see if the noun
(N$) is one of the four directions: north, south, east, west, up, or
down. If so, it assigns a value between 0 and 5 to variable DI, then
jumps to the routine on line 2400. This routine checks the element
of the map array, MA, that is equal to the current room and the
requested direction. If this element equals 0, it does nothing. You
can't move that way. If it is greater than 127, it does nothing.
Otherwise, it changes variable R to the value of the new room,
and jumps back to line 90, which prints a description of this room
before executing the parser.

If it turns out that the requested move is illegal, the message
"YOU CAN'T GO THERE!" is printed. Notice, however, that
there is a lot of blank space left in this routine, where you can add
instructions of your own. Lines 2070 through 2380 are reserved
for routines that check for unusual directions that the player can
go, such as GO BUILDING or GO HOLE. There is one such direc­
tion in our adventure game: GO BOAT. We can add a short rou­
tine that checks for this command at line 2070, like this:

2070 IF N$="BOA" AND OB(11)=R+128 THEN R=13: GOTO
90

[41]

The BOAT is considered by the program to be both an object
and a room. (This is allowed!) It is room 13 and object 11. Line
2070 checks to see if the noun (N$) is equal to "BOA" and if
OB(II) is present in the current room (R). (It adds 128 to the room
number because the boat is an object that cannot be picked up and
therefore has 128 added to its room number to indicate this.) If all
of these conditions are true, the room number is changed to 13
(the boat) and the program jumps back to line 90, which prints a
description of room 13.

Lines 2410 to 2470 are reserved for map elements with num­
bers larger than 128. Since there is only one of these in our pro­
gram, we can put it on line 2410:

2410 IF MA(R,DI)=128 THEN PRINT "THE GUARD WON'T LET
YOU!" : GOTO 100

If the map element is equal to 128, then we know that we are at
the entrance to the castle, which is blocked by the guard. (We set
this up back in Chapter Four, remember?) The message "THE
GUARD WON'T LET YOU!" is printed, and the program jumps
back to the parser.

Let's tryout this routine. Add all of the lines above relating to
the GO routine to our program. Then add the following line:

480 GOTO 2000

This line follows the parser. It jumps to the first of the verb rou­
tines-the GO routine. (The lines between this line and the end of
the parser are reserved for any special routines that need to be
performed before the verb routines are executed.)

Also, add this line:

2500 REM

[42]

This holds the place of the next verb routine, until we get around
to writing it.

Run the program. You will now be able to move around
among the first five rooms of the adventure, with the commands
GO NORTH, GO SOUTH, GO EAST, and GO WEST. You cannot
move beyond room 5, however, without first mixing the magic
formula, and you cannot do this yet.

Another very important verb is "GET." Before we create a GET
routine, however, we need a subroutine that will check a room to
see if a certain object exists in the game. (We will put this in a
subroutine because it will be used by other verb routines.) Here is
that subroutine:

1000 IF NO=O THEN RETURN
1010 FOR 1=0 TO NO-1
1020 IF 02$(I)=N$ THEN FL=1 : RO=OB(I) : GOTO 1050
1030 NEXT I
1040 FL=O : RETURN
1050 RO=OB(I) : IF RO>127 THEN RO=RO-128
1060 RETURN

This subroutine does several things for us. The key is a special
variable called FL. The name is short for "flag," because it is a flag
variable. A flag variable is a variable that carries information
about the results of a routine. In this case, FL tells us whether an
object exists in the game. When this subroutine executes, it will
give FL one of two values. If FL equals 0, then there is no such
object in the game. If FL = 1 then there is such an object in the
game. In this case, the variable I is equal to the number of the
object in the object list. The variable RO is set equal to the number
of the room where the object can be found. (If 128 was added to
the room number of the object to indicate that it can't be picked
up, this subroutine automatically subtracts 128 from RO, so that it

[43]

represents the actual room number.) If RO equals -1, then the
object is in the player's inventory.

Here is the GET routine:

2499 REM *** 'GET' ROUTINE
2500 IF V$ <> "GET" AND V$ <>"TAK" THEN 2600
2510 GOSU8 1000
2520 IF FL=O THEN PRINT "YOU CAN'T GET THAT!" : GOTO
100
2530 IF RO= -1 THEN PRINT "YOU ALREADY HAVE IT!"
GOTO 100
2540 IF 08(1»127 THEN PRINT "YOU CAN'T GET THAT!"
GOTO 100
2550 IF RO<>R THEN PRINT "THAT'S NOT HERE!" : GOTO
100
2570 IF IN>NI THEN PRINT "YOU CAN'T CARRY ANY MORE."
: GOTO 100
2580 IN=IN+1 : 08(1)= -1 : PRINT "TAKEN." : GOTO 100

This routine is written in such a way (see line 2500) that it will
also accept the verb "TAKE" as a synonym for "GET." It is a good
idea to include synonyms for most of the major verbs in your
program, so that the player can phrase important sentences in
more than one way.

Before this routine can be used, you must create a variable
called NI and set it equal to the maximum number of objects that
the player can carry at one time in his or her inventory. You must
also create a variable called IN, which should initially be set equal
to O. This variable will always be equal to the current number of
objects in the player's inventory.

The first line (2500) checks to make sure that the verb is
"GET." If not, it skips to the next verb routine, at line 2600. Then
it calls the subroutine at 1000, to see if the noun represents one of
the objects in the game.

[44]

Line 2520 checks to see if the object exists. If not, it prints
"YOU CAN'T GET THAT!" and jumps back to the parser.

Line 2530 checks to see if the object is in the player's inven­
tory. If so, it prints "YOU ALREADY HAVE IT!" and jumps back
to the parser.

Line 2540 checks to see if the object can be picked up. If not
(that is, if its room number is greater than 127), it says "YOU
CAN'T GET THAT!" and jumps back to the parser.

Line 2550 checks to see if the object is in the current room.
If not, it prints "THAT'S NOT HERE!" and jumps back to the
parser.

Line 2570 checks to see if the player's inventory is full. If so, it
prints "YOU CAN'T CARRY ANY MORE!" and jumps back to the
parser.

If everything checks out properly, line 2580 increases the val­
ue of IN. Then it sets the room number for the object (which is in
variable OB(I)) equal to -1. The -1 means that the object is now
in the player's inventory.

There is a special line that we are going to put into this GET rou­
tine. Since the game is over when the player GETs the magic
jewel, we need to check to see if the noun is RUB (short for RUBY)
and if the player successfully GETs it. We can do this by adding
this line:

2575 IF R=18 AND N$="RUB" THEN PRINT "CONGRATULA
TIONS! YOU'VE WON!" : GOTO 3430

The routine on line 3430, which we will write in the next chapter,
asks the player if he or she wants to play again.

We also need a DROP routine, to get rid of objects that we have
picked up and don't want to carry anymore. Here is the DROP
routine:

[45]

2599 REM *** 'DROP' ROUTINE
2600 IF V$<>"DRO" AND V$<>"THR" THEN 2700
2610 GOSU8 1000
2620 IF FL=O OR RO<> -1 THEN PRINT "YOU DON'T HAVE
THAT!" : GOTO 100
2650 IN=IN-1 : 08(1)= -1 : PRINT "DROPPED." : GOTO
100

After making sure that the verb is "DROP" (or "THROW," which
is usually allowed in adventures as a synonym for "DROP"), this
routine calls the subroutine at 1000 to see if the noun is a real
object. If it isn't a real object (in the game) or if it is but the player
doesn't have it, the routine prints "YOU DON'T HAVE THAT!"
and jumps back to the parser.

Otherwise, it subtracts 1 from IN and sets OB(I) (the room
number of the object) equal to the current room number. Now, the
object will appear in the description of the current room.

Finally, we need an INVENTORY routine. Here it is:

2699 REM *** 'INVENTORY' ROUTINE
2700 IF V$ <>"INV" AND V$ <>"1" THEN 2800
2710 FL=O : PRINT "YOU ARE CARRYING:"
2720 FOR 1=0 TO NO-1
2730 IF 08(1)= -1 THEN PRINT" ";08$(1) : FL=1
2740 NEXT I
2750 IF FL=O THEN PRINT" NOTHING"
2760 GOTO 100

This is a fairly simple routine. It prints the words "YOU ARE
CARRYING:", then checks the room number of every object in
the object list. If the room number of an object is -1, then it prints
the name of that object. If no object has a room number of -I, it
prints "NOTHING."

[46]

To use these last three routines, add them to our program
(starting with the subroutine at line 1000) and then make the fol­
lowing change:

60 R=1 : IN=O : NI=O

Now you can use the words "GET," "DROP," and "INVEN­
TORY," as you wander around among the first five rooms using
the GO command.

These routines can be included, in pretty much the same form,
in all adventure games. In the next chapter, we'll give you some
verb routines that are unique to this program.

[47]

CHAPTER SEVEN

VERBS, VERBS,
AND MORE VERBS

For every verb that the player is able to use in playing the game,
there must be a verb routine in the finished program. In this chap­
ter, we present the verb routines that will make our game unique.
The routines in the last chapter were essential; the routines in this
chapter are, we hope, fun.

The "EXAMINE" verb, for instance, is used to take a closer
look at objects, to learn details that might be essential in complet­
ing the quest.

An important synonym for "EXAMINE" is "LOOK." Instead
of "EXAMINE BOTTLE," the player may say "LOOK BOTTLE"­
short for "look at bottle." However, the verb "LOOK" has a spe­
cial meaning if used without a noun. It tells the program to print
out a description of the current room. Therefore the EXAMINE
routine, printed below, also contains a special routine for the verb
"LOOK." If the verb "LOOK" is used by itself, it jumps back to
line 90, which prints a description of the current room. If "LOOK"
is used with a noun, it jumps to the EXAMINE routine. ("LOOK"
can be abbreviated as L.)

Here is the EXAMINE/LOOK routine:

[49]

2799 REM *** 'LOOK' ROUTINE
2800 IF V$<>"LOO" AND V$<>"L" THEN 2900
2810 IF N$<>"" THEN 2910
2820 GOTO 90
2899 REM *** 'EXAMINE' ROUTINE
2900 IF V$<>"EXA" THEN 3400
2910 IF N$<>"GRO" THEN 2940
2920 IF R<>6 THEN PRINT "IT LOOKS LIKE GROUND!"
GOTO 100
2930 PRINT "IT LOOKS LIKE SOMETHING'S BURIED HERE." :
GOTO 100
2940 REM
3000 GOSU B 1000
3010 IF RO<>R AND RO<>-1 THEN PRINT "IT'S NOT
HERE!" : GOTO 100
3020 IF N$= "BOT" THEN PRINT "THERE'S SOMETHING
WRITTEN ON IT!" : GOTO 100
3030 IF N$="CAS" THEN PRINT "THERE'S A JEWEL INSIDE!"
: GOTO 100
3040 IF N$="BAR" THEN PRINT "IT'S FILLED WITH RAIN
WATER." : GOTO 100
3390 PRINT"YOU SEE NOTHING UNUSUAL." : GOTO 100

In line 3000, this routine looks to see if the object to be exam­
ined is present, by calling the subroutine at 1000. If the object is
not present, it responds "IT'S NOT HERE!"

Sometimes, the player may need to examine something that is
not in the object list. You must check for this before line 3000. (The
lines after line 2900 and before 3000 are reserved for this.) In the
routine above, the player can say "EXAMINE GROUND" while
standing in the open field (room 6). We check for this in lines
2910-2930.

Another important verb is "QUI," which lets the player end
the game early. The QUIT routine first asks the player if he or she
really wants to quit, in case the command was typed accidentally.

[50]

QUIT" requires no noun. Here is the QUIT routine:

3400 IF V$<>"QUI" THEN 3500
3410 PRINT "ARE YOU SURE YOU WANT TO QUIT (YIN)"; :
INPUT QU$
3420 IF QU$= "N" THEN GOTO 100
3430 PRINT "WOULD YOU LIKE TO PLAY AGAIN (YIN)";
INPUT QU$
3440 IF QU$= "Y" THEN RUN
3450 IF QU$="N" THEN END
3460 GOTO 3430

Sometimes the player will need to read something, either a
book or an object (such as the bottle of formula). Here is a routine
for the "READ" verb:

3500 IF V$<>"REA" THEN 3700
3510 IF N$<>"DIA" THEN 3560
3520 IF OB(O)<>R AND OB(O)<> -1 THEN PRINT "THERE'S
NO DIARY HERE!" : GOTO 100
3530 PRINT "IT SAYS: 'ADD SODIUM CHLORIDE PLUS THE"
3540 PRINT "FORMULA TO RAINWATER, TO REACH THE"
3550 PRINT "OTHER WORLD.' " : GOTO 100
3560 IF N$<>"DIC" THEN 3590
3570 IF OB(4)<>R AND OB(4)<>-1 THEN PRINT "YOU
DON'T SEE A DICTIONARY!" : GOTO 100
3580 PRINT "IT SAYS: SODIUM CHLORIDE IS" : PRINT "COM
MON TABLE SALT." : GOTO 100
3590 IF N$ <>"BOT" THEN 3620
3600 IF OB(6) <>R AND OB(6)<> -1 THEN PRINT "THERE'S
NO BOTTLE HERE!" : GOTO 100
3610 PRINT "IT READS: 'SECRET FORMULA'." : GOTO 100
3620 REM
3690 PRINT "YOU CAN'T READ THAT!" : GOTO 100

[51]

Like most of the routines that follow, this routine checks to
make sure that the object to be read is either in the same room
with the player or in the player's inventory. We can check if an
object is in the same room as the player by writing:

IF 08(1)=R THEN [do this]

where I is the number of the object in the object list and R is the
current room. We can check if the object is in the player's inven­
tory with the statement:

IF 08(1)= -1 THEN [do this]

We can combine these two checks in the statement:

IF 08(1)= R OR 08(1)= -1 THEN [do this]

Usually, however, we do it the other way around:

IF 08(1)<>R AND 08(1)<>-1 THEN [give error message]

This says: If the object isn't in the same room or in the player's
inventory, a mistake has been made.

A few objects in this game, such as the BOX and the CASE,
can be OPENed. Here is the routine for the "OPEN" verb:

3700 IF V$<>"OPE" THEN 3900
3710 IF N$<>"BOX" THEN 3740
3720 IF 08(1)<>R AND 08(1)<>-1 THEN PRINT "THERE'S
NO 80X HERE!" : GOTO 100
3730 08(6)=R : PRINT "SOMETHING FELL OUT!" : GOTO
100
3740 IF N$<>"CA8" THEN 3770
3750 IF R<>2 THEN PRINT "THERE'S NO CA81NET HERE!" :
GOTO 100

[52]

3760 PRINT "THERE'S SOMETHING INSIDE!" : OB(3)=2 :
GOTO 100
3770 IF N$<>"CAS" THEN 3820
3780 IF R<>18 THEN PRINT "THERE'S NO CASE HERE!" :
GOTO 100
3790 IF GF<>1 THEN PRINT "THE CASE IS ELECTRIFIED!" :
GOTO 100
3800 PRINT "THE GLOVES INSULATE AGAINST THE"
3810 PRINT "ELECTRICITY! THE CASE OPENS!"
3820 OB(15)=18: GOTO 100
3890 PRINT "YOU CAN'T OPEN THAT!" : GOTO 100

This routine includes a special variable called GF, short for
"glove flag./I This variable tells us whether the player is wearing
the gloves. If GF equals 0, the player is not wearing the rubber
gloves and cannot open the electrified case. If GF equals I, then
the player is wearing the gloves and can open the case.

To reach the magic land, it is necessary to POUR the salt and
the formula into the rainwater. Here is the POUR routine:

3900 IF V$<>"POU" THEN 4100
3910 IF N$<>"SAL" THEN 3960
3920 IF OB(3)<>R AND OB(3)<>-1 THEN PRINT "YOU
DON'T HAVE THE SALT!" : GOTO 100
3930 IF SF= 1 THEN PRINT "THE SHAKER IS EMPTY!" : GOTO
100
3940 IF R=5 THEN MX=MX+1
3950 SF=1 : PRINT "POURED!" : GOTO 4010
3960 IF N$<>"BOT" THEN PRINT "YOU CAN'T POUR THAT!"
: GOTO 100
3970 IF OB(6)<>R AND OB(3)<> -1 THEN PRINT "YOU
DON'T HAVE THE BOTTLE!" : GOTO 100
3980 IF FF= 1 THEN PRINT "THE BOTTLE IS EMPTY!" : GOTO
100
3990 IF R=5 THEN MX=MX+1

[53]

4000 FF= 1 : PRINT "POURED!"
4010 IF MX<3 THEN 100
4020 PRINT "THERE IS AN EXPLOSION!"
4030 PRINT "EVERYTHING GOES BLACK!"
4040 PRINT "SUDDENLY YOU ARE. .. "
4050 PRINT". . . SOMEWHERE ELSE!"
4060 R=6 : GOTO 90

This routine uses three special variables: SF (short for "salt
flag"), FF ("formula flag"), and MX ("mixture"). SF tells us if the
salt has been poured yet. If SF equals 0 the salt has not been
poured; if it equals 1 then it has been. In the same way, FF tells us
if the formula has been poured. MX tells us how many ingredients
are in the magic mixture. To reach the magic land, all three ingre­
dients-rainwater, salt, and formula-must be in the barrel.
When the game starts, MX equals I, because one ingredient, the
rainwater, is in the barrel. For every additional ingredient poured
into the barrel, the value of MX is increased by 1. When it reaches
3, the player is transported to the magic land!

The player may want to climb either the tree (at the edge of
the forest, room 7) or the ladder (object #7). Neither of these tac­
tics will do the player any good, but we include a CLIMB routine
anyway:

4100 IF V$ <>"CU" THEN 4300
4110 IF N$ <>"TRE" THEN 4140
4120 IF R <>7 THEN PRINT "THERE'S NO TREE HERE!" :
GOTO 100
4130 PRINT "YOU CAN'T REACH THE BRANCHES!" : GOTO
100
4140 IF N$ <>"LAD" THEN 4280
4145 IF OB(7) <>R AND OB(7) <>-1 THEN PRINT "YOU
DON'T HAVE THE LADDER!" : GOTO 100
4150 IF R<>7 THEN 4180
4160 PRINT "THE LADDER SINKS UNDER YOUR WEIGHT!"

[54]

4170 PRINT "IT DISAPPEARS INTO THE GROUND!" : OB(7)=0
: GOTO 100
4180 IF R<>20 THEN PRINT "WHATEVER FOR?" : GOTO
100
4280 PRINT "IT WON'T DO ANY GOOD."

The way to get to the top of the tree, of course, is to jump.
Here is the JUMP routine:

4300 IF V$<> "JUM" THEN 4400
4310 IF R<>7 AND R<>8 THEN PRINT "WHEE! THAT WAS
FUN!" : GOTO 100
4315 IF R=8 THEN 4350
4320 PRINT "YOU GRAB THE LOWEST BRANCH OF THE"
4330 PRINT "TREE AND PULL YOURSELF UP "
4340 R=8 : GOTO 90
4350 PRINT "YOU GRAB A HIGHER BRANCH ON THE"
4360 PRINT 'TREE AND PULL YOURSELF UP.
4370 R=19 : GOTO 90

To find the sword (object #10), the player must dig a hole in
the open field (room 6). But before the player can dig, he or she
must have the shovel (object #8). Here is the DIG routine:

4400 IF V$<>"DIG" THEN 4500
4410 IF N$<>"HOL" AND N$<>"GRO" AND N$<>'''' THEN
PRINT "YOU CANT DIG THAT!" : GOTO 100
4415 IF OB(8)<>R AND OB(8)<>-1 THEN PRINT "YOU
DON'T HAVE A SHOVEL!" : GOTO 100
4420 IF R<>6 THEN PRINT "YOU DON'T FIND ANYTHING." :
GOTO 100
4430 IF OB(10)<>0 THEN PRINT "THERE'S NOTHING ELSE
THERE!" : GOTO 100
4440 PRINT "THERE'S SOMETHING THERE!" : OB(10)=6 :
GOTO 100

[55)

When the player gets to the boat (room 13), he or she will try
to make it move. Rowing doesn't work, but we include a "ROW"
verb to make things interesting:

4500 IF V$<>"ROW" THEN 4600
4510 IF N$<>"BOA" AND N$<>"" THEN PRINT "HOW CAN
YOU ROW THAT?" : GOTO 100
4520 IF R<>13 PRINT "YOU'RE NOT IN THE BOAT!" : GOTO
100
4530 PRINT "YOU DON'T HAVE AN OAR!" : GOTO 100

The real way to move the boat is to wave the magic fan (object
#12). Here is the "WAVE" verb routine:

4600 IF V$<>"WAV" THEN 4700
4610 IF N$<>"FAN" THEN PRINT "YOU CAN'T WAVE THAT!"
: GOTO 100
4615 IF OB(12)<>R AND OB(12)<>-1 THEN PRINT "YOU
DON'T HAVE THE FAN!" : GOTO 100
4620 IF R<>13 THEN PRINT "YOU FEEL A REFRESHING
BREEZE!" : GOTO 100
4630 PRINT "A POWERFUL BREEZE PROPELS THE BOAT"
4640 PRINT "TO THE OPPOSITE SHORE!"
4650 IF OB(11)= 140 THEN OB(11)= 142 : GOTO 100
4660 OB(11)=140: GOTO 100

Once the boat has been WAVEd to the opposite shore (room
14), the player will need to get out. Here is the LEAVE (or EXIT)
routine:

4700 IF V$<>"LEA" AND V$<>"EXI" THEN 4800
4710 IF R<>13 THEN PRINT "PLEASE GIVE A DIRECTION!" :
GOTO 100
4720 IF N$ <>"BOA" AND N$ <>"" THEN PRINT "HUH?" :

[56]

GOTO 100
4730 R=08(11)-128: GOTO 90

Finally, the player will come to the castle. A nasty guard (ob­
ject #13) stands in the door. The player must FIGHT the guard,
but the fight will be useless without the sword (object #10). Here
is the FIGHT routine:

4800 IF V$ <>"FIG" THEN 4900
4810 IF N$= I'"~ THEN PRINT "WHOM DO YOU WANT TO
FIGHT?" : GOTO 100
4820 IF N$ <>"GUA" THEN PRINT "YOU CAN'T FIGHT HIM!":
GOTO 100
4830 IF R <>16 THEN PRINT "THERE'S NO GUARD HERE!" :
GOTO 100
4840 IF 08(10) <>-1 THEN PRINT "YOU DON'T HAVE A
WEAPON!" : GOTO 100
4850 PRINT "THE GUARD, NOTICING YOUR SWORD,"
4860 PRINT "WISELY RETREATS INTO THE CASTLE."
4870 MA{16,0)=17: 08(13)=0 : GOTO 100

At long last, the player is inside the large hall (room 18) facing
the glass case (object #14) that contains the jewel (object #15). But
the case is electrified! The gloves (object # 17) are needed here, but
to be effective the player must WEAR them. Here is the "WEAR"
verb:

4900 IF V$ <>"WEA" THEN 24900
4910 IF N$ <>"GLO" THEN PRINT "YOU CAN'T WEAR
THAT!" : GOTO 100
4920 IF 08(16) <>R AND 08(16) <>-1 THEN PRINT "YOU
DON'T HAVE THE GLOVES." : GOTO 100
4930 PRINT "YOU ARE NOW WEARING THE GLOVES." :
GF=1 : GOTO 100

[57]

If the player types WEAR GLOVES while carrying the gloves, the
variable GF ("glove flag") will be set to 1, which tells the OPEN
routine that the gloves are being worn. The case can then be
opened. The jewel may then be extracted, and the game won!

And that's all of the verbs that this game understands. If the
player types a verb that the game doesn't know, the program must
indicate the error, like this:

24900 PRINT "I DON'T KNOW HOW TO DO THAT" GOTO
100

And now the game is almost ready to be played. We'll take
care of the final details in the next chapter.

[58]

CHAPTER EIGHT

FINISHING
TOUCHES

And now that our adventure program is at an end, we must write
its beginning. Many adventure programs, including this one, open
with a short text message, explaining the premise of the adven­
ture. You don't have to include such an introductory message in
your programs, but it is a pleasant touch. Here is the introductory
section of our adventure:

30000 PRINT "ALL YOUR LIFE YOU HAD HEARD THE STO
RIES"
30010 PRINT "ABOUT YOUR CRAZY UNCLE SIMON. HE WAS
AN"
30020 PRINT "INVENTOR, WHO KEPT DISAPPEARING FOR"
30030 PRINT "LONG PERIODS OF TIME, NEVER TELLING"
30040 PRINT "ANYONE WHERE HE HAD BEEN."
30050 PRINT
30060 PRINT "YOU NEVER BELIEVED THE STORIES, BUT"
30070 PRINT "WHEN YOUR UNCLE DIED AND LEFT YOU
HIS"
30080 PRINT "DIARY, YOU LEARNED THAT THEY WERE
TRUE."

[59]

30090 PRINT "YOUR UNCLE HAD DISCOVERED A MAGIC"
30100 PRINT "LAND, AND A SECRET FORMULA THAT
COULD"
30110 PRINT "TAKE HIM THERE. IN THAT LAND WAS A"
30120 PRINT "MAGIC RUBY, AND HIS DIARY CONTAINED"
30130 PRINT "THE INSTRUCTIONS FOR GOING THERE TO"
30140 PRINT "FIND IT."
30150 INPUT A
31999 RETURN

The INPUT statement in line 30150 will keep the text on the dis­
play until the player presses RETURN. You might want to add a
message telling the player to press the RETURN key, if there is
room for such a message at the bottom of the display. (Some com­
puters have larger displays than others.) You can include several
screens of text in your introduction, by separating them with
INPUT statements like this.

The program is pretty much complete now. If you have been
typing all of the lines and routines as we went along, you now
have the complete program-or just about. Make these changes
and additions:

20 NR=1 : NO=17 : ND=6 : NI=5
40 PRINT "PLEASE STAND BY ": PRINT: PRINT
60 R=1 : IN=O : SF=O : FF=O : MX=1 : GF=O
70 GOSUB 30000 : REM INTRODUCTORY SEQUENCE
80 REM ADD A STATEMENT HERE TO CLEAR THE VIDEO DIS
PLAY

There are a couple of objects in this program that can be re­
ferred to by more than one name. The salt shaker, for instance,
might be called SALT or it might be called SHAKER. The BOTTLE
might also be referred to, under certain circumstances, as the
FORMULA. Objects can have only one tag, but we can put special

[60)

routines directly after the parser that look for possible synonyms
and correct them. The lines from 210 to 470 are reserved for this.
Here are two lines that you should add:

210 IF N$="SHA" THEN N$="SAL"
220 IF N$= "FOR" THEN N$= "BOT"

This corrects possible problems with the words "FORMULA"
and "SHAKER."

If you haven't been typing along, or you aren't sure that you
have everything right, the complete program is printed in Appen­
dix A. If you have problems in making the program run correctly,
proofread it against this version, and see if you can find any mis­
takes in typing, or sections that you might have left out.

In the second appendix, Appendix B, you will find the Skele­
ton Adventure Program. This skeleton program contains most of
the routines you need to get your own adventure game program
up and running. It also includes a lot of REM statements, which
tell you where you should add your own routines and DATA
statements, to create your own adventure.

If you have read all of the chapters leading up to this one, you
should have no trouble using the skeleton adventure. It can be the
source of an unlimited number of adventures. Just fill in the
blanks.

Of course, knowing how to program isn't everything there is
to writing an adventure. The most important element isn't pro­
gramming-it's imagination.

Nobody can teach you how to be imaginative. That's the part
you have to do all by yourself.

But, of course, you have an imagination machine to help
you

[61]

APPENDIX A

THE QUEST

1 REM ** THE QUEST **

2 REM **

3 REM ** An adventure game
4 REM
10 REM Put a statement here to clear the screen. If you are using a
Radio Shack Model I, III, or 4, add a CLEAR statement. (See text.)
20 NR=19 : NO=17 : ND=6: NI=5
30 DIM R$(NR),OB(NO),OB$(NO),02$(NO),MA(NR,ND)
40 PRINT "Please stand by " : PRINT: PRINT
50 GOSUB 25000 : GOSUB 26000 : GOSUB 27000 : REM initialize
arrays
60 R=1 : IN=O : SF=O: FF=O: MX=1 : GF=O
70 GOSUB 30000 : REM Execute introductory sequence, if any.
80 REM Put a statement here to clear the screen.
90 GOSUB 700 : GOSUB 500 : GOSUB 600
91 REM
92 REM *** PARSER
99 REM
100 PRINT; CM$="": INPUT "WHAT NOW";CM$: IF CM$='''' THEN
100

[63]

110 C=O: V$="": N$=''''
120 C=C+1 : IF C>LEN(CM$) THEN 150
130 W$=MID$(CM$,C,1) : IF W$=" " THEN 150
140 V$=V$+W$: GOTO 120
150 C=C+1 : IF C>LEN(CM$) THEN 180
160 W$=MID$(CM$,C,1): IF W$=" " THEN 180
170 N$=N$+W$: GOTO 150
180 IF V$='''' THEN 100
190 IF LEN(V$»3 THEN V$=LEFT$(V$,3)
200 IF LEN(N$»3 THEN N$=LEFT$(N$,3)
210 IF N$="SHA" THEN N$="SAL"
220 IF N$="FOR" THEN N$="BOT"
259 REM
290 REM
480 GOTO 2000 : REM Execute verb routines.
490 REM
491 REM *** DIRECTIONS
496 REM
500 PRINT "YOU CAN GO: ";
510 FOR 1=0 TO 5
520 IF MA(R,I»O THEN PRINT DI$(I) ;" ";
530 NEXT I
540 PRINT
550 RETURN
590 REM
596 REM
600 PRINT "YOU CAN SEE: "
610 FL=O : FOR 1=0 TO NO-1
620 IF (OB(I) AND 127)=R THEN PRINT" ";OB$(I) : FL=1
630 NEXT I
640 IF FL=O THEN PRINT" NOTHING OF INTEREST"
650 RETURN
690 REM
691 REM ** ROOM DESCRIPTION

[64]

696 REM
700 PRINT: PRINT "YOU ARE ";R$(R)
710 RETURN
1000 IF NO=O THEN RETURN
1010 FOR 1=0 TO NO-1
1020 IF 02$(I)=N$ THEN FL=1 : RO=OB(I) : GOTO 1050
1030 NEXT I
1040 FL=O : RETURN
1050 RO=OB(I) : IF RO>127 THEN RO=RO-128
1060 RETURN
1904 REM
1998 REM Routine for the verb 'GO'.
1999 REM
2000 IF V$<>"GO" THEN 2500
2010 IF N$="NOR" THEN DI=O: GOTO 2400
2020 IF N$="SOU" THEN DI=1 : GOTO 2400
2030 IF N$="EAS" THEN DI=2: GOTO 2400
2040 IF N$="WES" THEN DI=3: GOTO 2400
2050 IF N$="UP" THEN DI=4 : GOTO 2400
2060 IF N$="DOW" THEN DI=5 : GOTO 2400
2070 IF N$="BOA" AND OB(11)=R+128 THEN R=13: GOTO 90
2390 PRINT "YOU CAN'T GO THERE!" : GOTO 100
2391 REM
2399 REM
2400 IF MA(R,DI»O AND MA(R,DI)<128 THEN R=MA(R,DI) : GOTO
90
2409 REM
2410 IF MA(R,DI)=128 THEN PRINT "THE GUARD WON'T LET YOU!"
: GOTO 100
2480 GOTO 2390
2490 REM
2499 REM *** 'GET' ROUTINE
2500 IF V$<>"GET" AND V$<>"TAK" THEN 2600
2510 GOSUB 1000

[65]

2520 IF FL=O THEN PRINT "YOU CAN'T GET THAT!" : GOTO 100
2530 IF RO= -1 THEN PRINT "YOU ALREADY HAVE IT!" : GOTO
100
2540 IF OB(I»127 THEN PRINT "YOU CAN'T GET THAT!" : GOTO
100
2550 IF RO<>R THEN PRINT "THAT'S NOT HERE!" : GOTO 100
2570 IF IN>NI THEN PRINT "YOU CAN'T CARRY ANY MORE," :
GOTO 100
2575 IF R=18 AND N$="RUB" THEN PRINT "CONGRATULATIONS!
YOU'VE WON!" : GOTO 3430
2580 IN=IN+1 : OB(I)=-1 : PRINT "TAKEN," : GOTO 100
2599 REM *** 'DROP' ROUTINE
2600 IF V$<>"DRO" AND V$<>"THR" THEN 2700
2610 GOSU8 1000
2620 IF FL=O OR RO<>-1 THEN PRINT "YOU DON'T HAVE
THAT!" : GO TO 100
2650 IN=IN-1 : 08(1)=-1 : PRINT "DROPPED,": GOTO 100
2699 REM *** 'INVENTORY' ROUTINE
2700 IF V$<>"INV" AND V$<>"I" THEN 2800
2710 FL=O : PRINT "YOU ARE CARRYING:"
2720 FOR 1=0 TO NO-1
2730 IF 08(1)= -1 THEN PRINT" ";08$(1) : FL= 1
2740 NEXT I
2750 IF FL=O THEN PRINT" NOTHING"
2760 GOTO 100
2799 REM *** 'LOOK' ROUTINE
2800 IF V$<>"LOO" AND V$<>"L" THEN 2900
2810 IF N$<>"" THEN 2910
2820 GOTO 90
2899 REM *** 'EXAMINE' ROUTINE
2900 IF V$<>"EXA" THEN 3400
2910 IF N$<>"GRO" THEN 2940
2920 IF R<>6 THEN PRINT "IT LOOKS LIKE GROUND!": GOTO
100

[66)

2930 PRINT "IT LOOKS LIKE SOMETHING'S BURIED HERE." : GOTO
100
2940 REM
3000 GOSUB 1000
3010 IF RO<>R AND RO<>-1 THEN PRINT "IT'S NOT HERE!" :
GOTO 100
3020 IF N$= "BOT" THEN PRINT "THERE'S SOMETHING WRITTEN
ON IT!" : GOTO 100
3030 IF N$= "CAS" THEN PRINT ''THERE'S A JEWEL INSIDE!":
GOTO 100
3040 IF N$="BAR" THEN PRINT "IT'S FILLED WITH RAINWATER." :
GOTO 100
3390 PRINT "YOU SEE NOTHING UNUSUAL." : GOTO 100
3400 IF V$<>"QUI" THEN 3500
3410 PRINT "ARE YOU SURE YOU WANT TO QUIT (YIN)"; : INPUT
QU$
3420 IF QU$="N" THEN GOTO 100
3430 PRINT "WOULD YOU LIKE TO PLAY AGAIN (YIN)"; : INPUT
QU$
3440 IF QU$= "Y" THEN RUN
3450 IF QU$="N" THEN END
3460 GOTO 3430
3500 IF V$<>"REA" THEN 3700
3510 IF N$<>"DIA" THEN 3560
3520 IF OB(O)<>R AND OB(0)<>-1 THEN PRINT "THERE'S NO
DIARY HERE!" : GOTO 100
3530 PRINT "IT SAYS: 'ADD SODIUM CHLORIDE PLUS THE"
3540 PRINT "FORMULA TO RAINWATER, TO REACH THE"
3550 PRINT "OTHER WORLD.' " : GOTO 100
3560 IF N$<>"DIC" THEN 3590
3570 IF OB(4)<>R AND OB(4)<>-1 THEN PRINT "YOU DON'T SEE
A DICTIONARY!" : GOTO 100
3580 PRINT "IT SAYS: SODIUM CHLORIDE IS" : PRINT "COMMON
TABLE SALT." : GOTO 100

[67]

3590 IF N$<>"80T" THEN 3620
3600 IF 08(6)<>R AND 08(6)<>-1 THEN PRINT "THERE'S NO
80TTLE HERE!" : GOTO 100
3610 PRINT "IT READS: 'SECRET FORMULA'." : GOTO 100
3620 REM
3690 PRINT "YOU CAN'T READ THAT!" : GOTO 100
3700 IF V$<>"OPE" THEN 3900
3710 IF N$<>"80X" THEN 3740
3720 IF 08(1)<>R AND 08(1)<>-1 THEN PRINT "THERE'S NO
80X HERE!" : GOTO 100
3730 08(6)=R : PRINT "SOMETHING FELL OUT!" : GOTO 100
3740 IF N$<>"CAB" THEN 3770
3750 IF R<>2 THEN PRINT "THERE'S NO CA81NET HERE!" : GOTO
100
3760 PRINT "THERE'S SOMETHING INSIDE!" : 08(3)=2 : GOTO
100
3770 IF N$<>"CAS" THEN 3820
3780 IF R<>18 THEN PRINT "THERE'S NO CASE HERE!" : GOTO
100
3790 IF GF<>1 THEN PRINT "THE CASE IS ELECTRIFIED!" : GOTO
100
3800 PRINT "THE GLOVES INSULATE AGAINST THE"
3810 PRINT "ELECTRICITY! THE CASE OPENS!"
382008(15)=18: GOTO 100
3890 PRINT "YOU CAN'T OPEN THAT!" : GOTO 100
3900 IF V$<>"POU" THEN 4100
3910 IF N$<>"SAL" THEN 3960
3920 IF 08(3}<>R AND 08(3)<>-1 THEN PRINT "YOU DON'T
HAVE THE SALT!" : GOTO 100
3930 IF SF=1 THEN PRINT "THE SHAKER IS EMPTY!" : GOTO 100
3940 IF R=5 THEN MX=MX+1
3950 SF=1 : PRINT "POURED!" : GOTO 4010
3960 IF N$<>"80T" THEN PRINT "YOU CAN'T POUR THAT!" :
GOTO 100
3970 IF 08(6)<>R AND 08(3)<>-1 THEN PRINT "YOU DON'T

[68]

HAVE THE BOTTLE!" : GOTO 100
3980 IF FF=1 THEN PRINT "THE BOTTLE IS EMPTY!" : GOTO 100
3990 IF R=5 THEN MX=MX+1
4000 FF=1 : PRINT "POURED!"
4010 IF MX<3 THEN 100
4020 PRINT "THERE IS AN EXPLOSION!"
4030 PRINT "EVERYTHING GOES BLACK!"
4040 PRINT "SUDDENLY YOU ARE ... "
4050 PRINT " ... SOMEWHERE ELSE!"
4060 R=6: GOTO 90
4100 IF V$<>"CLJ" THEN 4300
4110 IF N$<>"TRE" THEN 4140
4120 IF R<>7 THEN PRINT "THERE'S NO TREE HERE!" : GOTO
100
4130 PRINT "YOU CAN'T REACH THE BRANCHES!" : GOTO 100
4140 IF N$<>"LAD" THEN 4290
4145 IF OB(7)<>R AND OB(7)<>-1 THEN PRINT "YOU DON'T
HAVE THE LADDER!" : GOTO 100
4150 IF R<>7 THEN 4180
4160 PRINT "THE LADDER SINKS UNDER YOUR WEIGHT!"
4170 PRINT "IT DISAPPEARS INTO THE GROUND!" : OB(7)=0 :
GOTO 100
4180 PRINT "WHATEVER FOR?" : GOTO 100
4290 PRINT "IT WON'T DO ANY GOOD." : GOTO 100
4300 IF V$<>"JUM" THEN 4400
4310 IF R<>7 AND R<>8 THEN PRINT "WHEE! THAT WAS FUN!" :
GOTO 100
4315 IF R=8 THEN 4350
4320 PRINT "YOU GRAB THE LOWEST BRANCH OF THE"
4330 PRINT "TREE AND PULL YOURSELF UP "
4340 R=8 : GOTO 90
4350 PRINT "YOU GRAB A HIGHER BRANCH ON THE"
4360 PRINT "TREE AND PULL YOURSELF UP.
4370 R=19 : GOTO 90
4400 IF V$<>"DIG" THEN 4500

[69]

4410 IF N$<>"HOL" AND N$<>"GRO" AND N$<>'''' THEN
PRINT "YOU CAN'T DIG THAT!" : GOTO 100
4415 IF OB(8)<>R AND OB(8)<>-1 THEN PRINT "YOU DON'T
HAVE A SHOVEL!" : GOTO 100
4420 IF R<> 6 THEN PRINT "YOU DON'T FIND ANYTHING." : GOTO
100
4430 IF OB(10)<>0 THEN PRINT "THERE'S NOTHING ELSE
THERE!" : GOTO 100
4440 PRINT "THERE'S SOMETHING THERE!" : OB(10)=6 : GOTO
100
4500 IF V$<>"ROW" THEN 4600
4510 IF N$<>"BOA" AND N$<>'''' THEN PRINT "HOW CAN YOU
ROW THAT?" : GOTO 100
4520 IF R<>13 PRINT "YOU'RE NOT IN THE BOAT!" : GOTO 100
4530 PRINT "YOU DON'T HAVE AN OAR!" : GOTO 100
4600 IF V$<>"WAV" THEN 4700
4610 IF N$<>"FAN" THEN PRINT "YOU CAN'T WAVE THAT!" :
GOTO 100
4615 IF OB(12)<>R AND OB(12)<>-1 THEN PRINT "YOU DON'T
HAVE THE FAN!" : GOTO 100
4620 IF R<>13 THEN PRINT "YOU FEEL A REFRESHING BREEZE!"
: GOTO 100
4630 PRINT "A POWERFUL BREEZE PROPELS THE BOAT"
4640 PRINT "TO THE OPPOSITE SHORE!"
4650 IF OB(11)=140 THEN OB(11)=142: GOTO 100
46600B(11)=140: GOTO 100
4700 IF V$<>"LEA" AND V$<>"EXI" THEN 4800
4710 IF R<>13 THEN PRINT "PLEASE GIVE A DIRECTION!" : GOTO
100
4720 IF N$<>"BOA" AND N$<>"" THEN PRINT "HUH?" : GOTO
100
4730 R=OB(11)-128: GOTO 90
4800 IF V$<>"FIG" THEN 4900
4810 IF N$="" THEN PRINT "WHOM DO YOU WANT TO FIGHT?" :

[70]

GOTO 100
4820 IF N$<>"GUA" THEN PRINT "YOU CAN'T FIGHT HIM!" : GOTO
100
4830 IF R<>16 THEN PRINT "THERE'S NO GUARD HERE!" : GOTO
100
4840 IF 08(10)<>-1 THEN PRINT "YOU DON'T HAVE A WEAPON!"
: GOTO 100
4850 PRINT "THE GUARD, NOTICING YOUR SWORD,"
4860 PRINT "WISELY RETREATS INTO THE CASTLE."
4870 MA(16,O)=17 : 08(13)=0 : GOTO 100
4900 IF V$<>"WEA" THEN 5000
4910 IF N$<>"GLO" THEN PRINT "YOU CAN'T WEAR THAT!" :
GOTO 100
4920 IF 08(16)<>R AND 08(16)<>-1 THEN PRINT "YOU DON'T
HAVE THE GLOVES." : GOTO 100
4930 PRINT "YOU ARE NOW WEARING THE GLOVES." : GF=1
GOTO 100
5000 REM
24900 PRINT "I DON'T KNOW HOW TO DO THAT" : GOTO 100
24990 REM
24991 REM The following routine reads the map data into
24992 REM the map array, MA(ROOM, DIRECTION).
24993 REM
25000 IF NR=O THEN RETURN
25010 DI$(O)= "NORTH" : 01$(1)= "SOUTH" : DI$(2)= "EAST"
25020 DI$(3)= "WEST" : DI$(4)= "UP" : 01$(5)= "DOWN"
25030 FOR 1=1 TO NR
25040 FOR J=O TO ND-1
25050 READ MA(I,J)
25060 NEXT J
25070 NEXT I
25080 RETURN
25099 REM
25100 DATA 4,3,2,0,0,0 : REM LIVING ROOM

[71]

25110 DATA 0,0,0,1,0,0: REM KITCHEN
25120 DATA 1,0,0,0,0,0: REM LIBRARY
25130 DATA 0,1,0,5,0,0: REM FRONT YARD
25140 DATA 0,0,4,0,0,0 : REM GARAGE
25150 DATA 9,7,0,0,0,0 : REM OPEN FIELD
25160 DATA 6,0,0,0,0,0: REM EDGE OF FOREST
25170 DATA 0,0,0,0,0,7 : REM BRANCH OF TREE
25180 DATA 0,6,10,0,0,0 : REM LONG, WINDING ROAD (1)
25190 DATA 11,0,0,9,0,0: REM LONG, WINDING ROAD (2)
25200 DATA 0,10,0,12,0,0 : REM LONG, WINDING ROAD (3)
25210 DATA 0,0,11,0,0,0: REM SOUTH BANK OF RIVER
25220 DATA 0,0,0,0,0,0 : REM BOAT
25230 DATA 15,0,0,0,0,0 : REM NORTH BANK OF RIVER
25240 DATA 16,14,0,0,0,0 : REM WELL-TRAVELED ROAD
25250 DATA 128,15,0,0,0,0 : REM SOUTH OF CASTLE
25260 DATA 0,0,0,0,18,0 : REM NARROW HALL
25270 DATA 0,0,0,0,0,17 : REM LARGE HALL
25280 DATA 0,0,0,0,0,8 : REM TOP OF TREE
25900 REM
25910 REM The following subroutine reads the object data
25920 REM into the three object arrays, OB(X), OB$(X), and
25930 REM 02$(X).
25940 REM
26000 IF NO=O THEN RETURN
26010 FOR 1=0 TO NO-1
26020 READ OB$(I),02$(I),OB(I)
26030 NEXT I
26040 RETURN
26099 REM
26100 DATA AN OLD DIARY, DIA, 1 : REM OBJECT #0
26110 DATA A SMALL BOX, BOX, 1 : REM OBJECT #1
26120 DATA CABINET, CAB, 130: REM OBJECT #2
26130 DATA A SALT SHAKER, SAL, ° : REM OBJECT #3
26140 DATA A DICTIONARY, DIC, 3 : REM OBJECT #4
26150 DATA WOODEN BARREL, BAR, 133: REM OBJECT #5

[72]

26160 DATA A SMALL BOTTLE, BOT, 0: REM OBJECT #6
26170 DATA A LADDER, LAD, 4 : REM OBJECT #7
26180 DATA A SHOVEL, SHO, 5 : REM OBJECT #8
26190 DATA A TREE, TRE, 135 : REM OBJECT #9
26200 DATA A GOLDEN SWORD, SWO, 0: REM OBJECT #10
26210 DATA A WOODEN BOAT, BOA, 140: REM OBJECT #11
26220 DATA A MAGIC FAN, FAN, 8 : REM OBJECT #12
26230 DATA A NASTY-LOOKING GUARD, GUA, 144 : REM OBJECT
#13
26240 DATA A GLASS CASE, CAS, 146: REM OBJECT #14
26250 DATA A GLOWING RUBY, RUB, 0: REM OBJECT #15
26260 DATA A PAIR OF RUBBER GLOVES, GLO, 19: REM OBJECT
#17
26990 REM
27000 R$(1)="IN YOUR LIVING ROOM."
27010 R$(2)= "IN THE KITCHEN."
27020 R$(3) = "IN THE LIBRARY."
27030 R$(4)="IN THE FRONT YARD."
27040 R$(5)="IN THE GARAGE."
27050 R$(6)="IN AN OPEN FIELD."
27060 R$(7)="AT THE EDGE OF A FOREST."
27070 R$(8)= "ON A BRANCH OF A TREE."
27080 R$(9) = "ON A LONG, WINDING ROAD."
27090 R$(10)="ON A LONG, WINDING ROAD."
27100 R$(11)= "ON A LONG, WINDING ROAD."
27110 R$(12)="ON THE SOUTH BANK OF A RIVER."
27120 R$(13)="INSIDE THE WOODEN BOAT."
27130 R$(14)="ON THE NORTH BANK OF A RIVER."
27140 R$(15)="ON A WELL-TRAVELED ROAD."
27150 R$(16)="IN FRONT OF A LARGE CASTLE."
27160 R$(17)="IN A NARROW HALL."
27170 R$(18)= "IN A LARGE HALL."
27180 R$(19)="ON THE TOP OF A TREE."
29900 RETURN
29990 REM

[73]

30000 PRINT "ALL YOUR LIFE YOU HAD HEARD THE STORIES"
30010 PRINT "ABOUT YOUR CRAZY UNCLE SIMON. HE WAS AN"
30020 PRINT "INVENTOR, WHO KEPT DISAPPEARING FOR"
30030 PRINT "LONG PERIODS OF TIME, NEVER TELLING"
30040 PRINT "ANYONE WHERE HE HAD BEEN."
30050 PRINT
30060 PRINT "YOU NEVER BELIEVED THE STORIES, BUT"
30070 PRINT "WHEN YOUR UNCLE DIED AND LEFT YOU HIS"
30080 PRINT "DIARY, YOU LEARNED THAT THEY WERE TRUE."
30090 PRINT "YOUR UNCLE HAD DISCOVERED A MAGIC"
30100 PRINT "LAND, AND A SECRET FORMULA THAT COULD"
30110 PRINT "TAKE HIM THERE. IN THAT LAND WAS A"
30120 PRINT "MAGIC RUBY, AND HIS DIARY CONTAINED"
30130 PRINT 'THE INSTRUCTIONS FOR GOING THERE TO"
30140 PRINT "FIND IT."
30150 INPUT A
31999 RETURN

[74]

APPENDIX B

ADVENTURE GAME
SKELETON

1 REM ** ADVENTURE GAME SKELETON **
2 REM
10 REM The first line of the program should contain a CLEAR
11 REM statement, if your computer requires one. (See text
12 REM for details.) Also, you include a statement
13 REM that will clear the video display, such as 'CLS'
14 REM (IBM and Radio Shack computers). 'PRINT CHR$(147),
15 REM (Commodore computers), 'HOME' (Apple II computers),
16 REM and so forth.
17 REM
20 NR=O: NO=O: ND=6: NI=5
30 DIM R$(NR),OB(NO),OB$(NO),02$(NO),MA(NR + 1 ,NO)
40 PRINT "Please stand by ": PRINT: PRINT
50 GOSUB 25000 : GOSUB 26000 : GOSUB 27000 : REM initialize
arrays
60 R=1 : IN=O
70 GOSUB 30000 : REM Execute introductory sequence, if any.
80 REM Put a statement here to clear the video display.
90 GOSUB 700 : GOSUB 500 : GOSUB 600
91 REM

[75]

92 REM *** PARSER
94 REM The following routine prompts the player to type a
95 REM one- or two-word command to the computer, then breaks
96 REM the command into two strings of no more than three
97 REM characters apiece. The first string (the verb) is
98 REM stored in variable V$, the second (the noun) in N$.
99 REM
100 PRINT: CM$="": INPUT "WHAT NOW";CM$: IF CM$="" THEN
100
110 C=O : V$= "" : N$=''''
120 C=C+1 : IF C>LEN(CM$) THEN 150
130 W$=MID$(CM$,C,1) : IF W$=" " THEN 150
140 V$=V$+W$: GOTO 120
150 C=C+1 : IF C>LEN(CM$) THEN 180
160 W$=MID$(CM$,C,1): IF W$=" " THEN 180
170 N$=N$+W$: GOTO 150
180 IF V$="" THEN 100
190 IF LEN(V$»3 THEN V$=LEFT$(V$,3)
200 IF LEN(N$»3 THEN N$= LEFT$(N$,3)
259 REM
260 REM If you have any special routines that you want
270 REM the computer to perform between moves, such as a
280 REM timekeeping routine, put them here.
290 REM
480 GOTO 2000 : REM Execute verb routines.
490 REM
491 REM *** DIRECTIONS
492 REM The following subroutine prints the words 'YOU CAN GO',
493 REM followed by a list of the directions that the player
494 REM may go from the current room, based on the information
495 REM in the map array, MA(ROOM, DIRECTION).
496 REM
500 PRINT "YOU CAN GO: ";
510 FOR 1=0 TO 5
520 IF MA(R,I»O THEN PRINT DI$(I) ;" ";

[76]

530 NEXT I
540 PRINT
550 RETURN
590 REM
591 REM *** OBJECTS
592 REM The following routine prints the words 'YOU CAN SEE',
593 REM followed by a description of all objects visible in
594 REM the current room, based on the information in the
595 REM object array, OB(ROOM).
596 REM
600 PRINT "YOU CAN SEE: ..
610 FL=O : FOR 1=0 TO NO-1
620 IF (OB(I)AND127)= R THEN PRINT" ";OB$(I) : FL= 1
630 NEXT I
640 IF FL=O THEN PRINT" NOTHING OF INTEREST."
650 RETURN
690 REM
691 REM ** ROOM DESCRIPTION
692 REM The following routine prints the words 'YOU ARE',
693 REM followed by a description of the current room.
694 REM (A room, in adventure game language, refers to any
695 REM location in the game map, both indoors and outdoors.)
696 REM
700 PRINT "YOU ARE ";R$(R)
710 RETURN
1000 IF NO=O THEN RETURN
1010 FOR 1=0 TO NO-1
1020 IF 02$(I)=N$ THEN FL=1 : RO=OB(I) : GOTO 1050
1030 NEXT I
1040 FL=O : RETURN
1050 RO=OB(I) : IF RO>127 THEN RO=RO-128
1060 RETURN
1900 REM Verb routines begin on line 2000. We have already
1901 REM included routines for the verbs 'GO', 'GET', 'DROP',
1902 REM and 'INVENTORY'. You may add as many additional

[77]

1903 REM routines as you wish.
1904 REM
1998 REM Routine for the verb 'GO'.
1999 REM
2000 IF V$<>"GO" THEN 2500
2010 IF N$="NOR" THEN 01=0: GOTO 2400
2020 IF N$="SOU" THEN 01=1 : GOTO 2400
2030 IF N$="EAS" THEN 01=2: GOTO 2400
2040 IF N$="WES" THEN 01=3: GOTO 2400
2050 IF N$="UP" THEN 01=4 : GOTO 2400
2060 IF N$="OOW" THEN 01=5: GOTO 2400
2069 REM
2070 REM If there is a specific place where the player can
2090 REM 'GO', such as a building or a door or a hole, etc.,
2100 REM you should use this section of the program to
2110 REM check to see if the player wants to go there. For
2120 REM instance, if the player can type 'GO HOUSE', you
2130 REM can add a line here that reads 'IF N$="HOU" AND R=X
2140 REM THEN R=X1', where X is the number of the room from
2150 REM which the player can go to the house, and X1
2160 REM is the house itself, or the first room inside the
2170 REM house. If the player uses a noun that is not
2180 REM recognized by your program, line 2490 will tell
2190 REM the player that 'YOU CAN'T GO THERE!'
2200 REM
2390 PRINT "YOU CAN'T GO THERE!" : GOTO 100
2391 REM
2392 REM The following lines check to see if the player can
2393 REM move in the requested direction. If so, the room
2394 REM number (R) is changed to the number of the new room
2395 REM and the program goes back to line 90, which prints a
2396 REM description of the new room. Otherwise, the program
2397 REM goes to line 2480, which announces that "YOU CAN'T
2398 REM GO THERE!"
2399 REM

[78]

2400 IF MA(R,DI»O AND MA(R,DI)<128 THEN R=MA(R,DI) : GOTO
90
2409 REM
2410 REM Special routines, represented on the map by direction
2411 REM numbers larger than 127, should go here.
2412 REM
2480 GOTO 2390
2490 REM
2491 REM Routine for the verb 'GET'.
2492 REM
2500 IF V$<>"GET" AND V$<>"TAK" THEN 2600
2510 GOSUB 1000
2520 IF FL=O THEN PRINT "YOU CAN'T GET THAT!" : GOTO 100
2530 IF RO=-1 THEN PRINT "YOU ALREADY HAVE IT!" : GOTO
100
2540 IF OB(I»127 THEN PRINT "YOU CAN'T GET THAT!" : GOTO
100
2550 IF RO<>R THEN PRINT "THAT'S NOT HERE!" : GOTO 100
2570 IF IN>NI THEN PRINT "YOU CAN'T CARRY ANY MORE." :
GOTO 100
2580 IN=IN+1 : OB(I)=-1 : PRINT "TAKEN." : GOTO 100
2600 IF V$<>"DRO" AND V$<>"THR" THEN 2700
2610 GOSUB 1000
2620 IF FL=O THEN PRINT "YOU DON'T HAVE THAT!" : GOTO 100
2640 IF RO<>-1 THEN PRINT "YOU DON'T HAVE THAT!" : GOTO
100
2650 IN=IN-1 : OB(I)=-1 : PRINT "DROPPED." : GOTO 100
2700 IF V$<>"INV" AND V$<>"I" THEN 2800
2710 FL=O: PRINT "YOU ARE CARRYING:"
2720 FOR 1=0 TO NO-1 .
2730 IF OB(I)= -1 THEN PRINT" ";OB$(I) : FL=1
2740 NEXT I
2750 IF FL=O THEN PRINT" NOTHING"
2760 GOTO 100
2800 IF V$<>"LOO" AND V$<>"L" THEN 2900

[79]

2810 IF N$<>"" THEN 2910
2820 GOTO 90
2900 IF V$<>"EXA" THEN 3400
2910 GOSUB 1000
2920 FOR 1=0 TO NO-1
2960 IF RO<>R AND RO<>-1 THEN PRINT "IT'S NOT HERE!" :
GOTO 100
2999 REM
3000 REM Put your 'EXAMINE' routines here.
3001 REM
3400 IF V$<>"QUI" THEN 3500
3410 PRINT "ARE YOU SURE YOU WANT TO QUIT (YIN)"; : INPUT
QU$
3420 IF QU$="N" THEN GOTO 100
3430 PRINT "WOULD YOU LIKE TO PLAY AGAIN (YIN)"; : INPUT
QU$
3440 IF QU$="Y" THEN RUN
3450 IF QU$= "N" THEN END
3460 GOTO 3430
3490 PRINT "YOU SEE NOTHING UNUSUAL" : GOTO 100
3500 REM Put the rest of your verb routines here.
3510 REM
24900 PRINT"I DON'T KNOW HOW TO DO THAT" : RETURN
24990 REM
24991 REM The following routine reads the map data into
24992 REM the map array, MA(ROOM, .DIRECTION).
24993 REM
25000 IF NR=O THEN RETURN
25010 DI$(O)="NORTH" : DI$(1)="SOUTH" : DI$(2)="EAST"
25020 DI$(3)="WEST" : DI$(4)="UP" : DI$(5)="DOWN"
25030 FOR 1=1 TO NR
25040 FOR J=O TO ND-1
25050 READ MA(I,J)
25060 NEXT J
25070 NEXT I

[80]

25080 RETURN
25099 REM
25100 REM Here is where you put the DATA statements con-
25110 REM taining the map directions. Each DATA statement
25120 REM represents one of the rooms in the game map,
25130 REM starting with room 1. Each DATA statement should
25140 REM contain 6 numbers, one for each of the six
25150 REM map directions: north, south, east, west, up,
25160 REM and down, in that order. (If you are using more
25170 REM than six directions, the DATA statements should
25180 REM have more than six numbers.) If the number for any
25190 REM direction is 0, then the player cannot go in that
25200 REM direction from that room. If the number is
25210 REM greater than 0, then it is the number of the room
25220 REM that the player will be in if he or she goes in
25230 REM that direction.
25240 REM
25900 REM
25910 REM The following subroutine reads the object data
25920 REM into the three object arrays, OB(X), OB$(X), and
25930 REM 02$(X).
25940 REM
26000 IF NO=O THEN RETURN
26010 FOR 1=0 TO NO-1
26020 READ 08$(1),02$(1),08(1)
26030 NEXT I
26040 RETURN
26099 REM
26100 REM The OAT A statements containing the object
26110 REM information should go here. There should be three
26120 REM data items for each object, the first containing
26130 REM the name of the object, as it will be identified
26140 REM to the player (i.e., 'SMALL RED MATCHBOOK'), the
26150 REM second a three-letter 'tag' that the computer
26160 REM can use to recognize the name when the user types

[81]

26170 REM it (i.e., 'MAT), and the third the number of the
26180 REM room in which the object is located at the
26190 REM beginning of the game. If the object does not
26200 REM yet exist, or is not yet visible, at the beginning
26210 REM of the game, it should be given a room number of O.
26220 REM If it is in the player's inventory, it should be
26230 REM given a room number of -1. If the object is
26240 REM immovable--that is, if the player cannot 'GET'
26250 REM the object--you should add 128 to the room
26260 REM number.
27000 REM Here is where you create the array R$ that contains
27010 REM the names of the rooms. You create the array as a
27020 REM series of assignment statements (that is, commands
27030 REM that set a string variable equal to a string, using
27040 REM the equals (' = ') sign). Here is what one of these
27050 REM assignment statements might look like:
27060 REM
27070 REM R$(1)="IN A GIANT CAVERN."
27080 REM
27090 REM Be sure NOT to put the word REM in front of the
27100 REM statement! There should be one assignment statement
27110 REM like this for every room in the adventure. The
27120 REM number in parentheses after R$ should be the number
27130 REM of the room on your original map. The 'name' of the
27140 REM room, which follows the equals sign in quotes,
27150 REM should begin with a preposition (like 'in' or 'on'
27160 REM or 'underneath'), followed by a word or words de-
27170 REM scribing the place. This name will be used whenever
27180 REM the player moves to a new room, or uses the 'LOOK'
27190 REM command. It will be preceded by the words 'YOU ARE',
27200 REM as in 'YOU ARE IN A GIANT CAVERN'.
27210 REM
29900 RETURN
30000 REM Here is where you put your introductory sequence, if
30010 REM you have one. The introductory sequence is a part of

[82)

30020 REM the program that will be executed before the actual
30030 REM adventure begins. It gives the player information he
30040 REM or she needs in order to play the adventure, such as
30050 REM instructions and background about the story. It is an
30060 REM optional part of the program--that is, you do not
30070 REM have to include it if you do not want to.
30080 REM
31999 RETURN

[83]

INDEX

AB array, 11, 19
Adams, Scott, 5
Adventure games:

characteristics of, 2
creation of. See QUEST, THE
form of, 7-9
history of, 2-3, 5
ideas for, 7
Original Adventure, description

of play, 3-5
Skeleton Program, 75-83

Adventure International, 5
Array, 10-11

for object names, 29-34
for map dimensions and direc­

tions, 19-27
for room names, 10-12

BASIC, 1-2
Microsoft, 2

Clearing the display, 14
CLIMB routine, 54-55

[85]

Colossal Cave Adventure, 3-5
Commands, 35-38. See also Verb

routines
BASIC, 2
parser and, 36-38

Computers, 1
Crowther, William, 3
Crowther and Woods Adventure, 3

Data statements:
for list of objects, 31-33
for map directions, 24-26

DI$ string array, 25
DIG routine, 55
DIM statement:

for map dimensions, 19-20
for map directions, 25
for number of objects, 29
for number of rooms, 11

Dimensioning. See DIM statement
Dimensions, map, 19-20
Directions, map, 20-27
Display, clearing of, 14

DROP routine, 45-46

Elements of arrays, 11
EXAMINE routine, 49-50
EXIT routine, 56-57

FF (formula flag) variable, 54
FIGHT routine, 57
FL (flag) variable, 43
FORTRAN,3

GET routine, 43-45
GF (glove flag) variable, 53, 58
GO routine, 40-43
GOSUB statement, 12, 13, 25, 33
GOTO statement, 40, 42
Graphics, 5

Introductory message, 59-60
IN variable, 44, 45
INVENTORY routine, 46-47

JUMP routine, 55-56

LEAVE routine, 56-57
LOOK routine, 49-50

MA array, 20-22, 25
Map making, 7-27

dimensions, 19-20
directions, 20-27
list of rooms, 9-13
paths between rooms, 17-19
room descriptions, 13-15

Map numbers, 23-24
Massachusetts Institute of Technolo­

gy (MIT), 5
Microsoft BASIC, 2
MX (mixture variable), 54

NI variable, 44

Nouns, 36-41
parser and, 36-39
verb routines and, 37-40

N$ string variable, 37-40
Numeric arrays, 10

OB array, 29-30
OB$ array, 29-30, 32-33
Object numbers, 32
Objects, 29-34. See also Verb routines
OPEN routine, 52-53
Original Adventure, 3-5
02$ array, 29-30

Parentheses, 10-11
Parser, 35-38
Paths between rooms, 17
POUR routine, 53-54
Programming, 1-2

QUEST, THE:
commands in. See Commands;

Verb routines
complete program for, 63-74
finishing touches to, 60-61
introductory message for, 59-60
objects in, 29-34
parser and, 35-38
plot of, 8-9
rooms of, see Rooms

Quest-type games:
defined, 7
See also Adventure games;

QUEST, THE
QUIT routine, 50-51

R$ array, 11-12
R variable, 12-13
READ routine, 51-52
Rooms:

defined, 9

[86]

Rooms (continued)
descriptions of, 14-15
list of, 9-13
map dimensions and, 19-20
map directions and, 20-27
objects in, 29-34
paths between, 17-19
ROW routine, 56

SF (salt flag) variable, 54
Skeleton Adventure Program, 75-83
String arrays, 10
Subscripts, 11, 13, 19,21
Synonyms for verbs, 44

Tags, 29-31
Two-dimensional arrays, 19-27

V$ string variable, 37-40
Variables:

FL, 43
GF, 53, 58
IN, 44, 45
MX,54
NI,44
R,12-13
SF, 54
subscripts of, 11, 13, 19,21
See also Arrays

[87]

Verb routines, 39-58
CLIMB, 54-55
DIG,55
DROP, 45-46
EXAMINE/LOOK, 49-50
FIGHT,57
GET,43-45
GO, 40-43
INVENTORY, 46-47
JUMP, 55
LEAVE (EXIT), 56-57
OPEN,52-53
operation of, 39-40
POUR,53-54
QUIT,50-51
READ,51-52
ROW, 56
WAVE,56
WEAR,57-58

Verbs, 36
parser and, 36-39
synonyms for, 44
See also Verb routines

WAVE routine, 56
WEAR routine, 56
Woods, Don, 3

Zork,5

